Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Uầy! Mong sao là đúng cho anh em chép chung, chứ sai thì cả lũ... thôi rồi lượm ơi!!!
Đau lòng, đau lòng thằng đệ cÒng!
a,P=\(\frac{x^2\left(x-3\right)+3\left(x-3\right)}{(x-3)^2}\)
=\(\frac{x^2+3}{x-3}\)
a) Điều kiện xác định: \(x^2-6x+9=\left(x-3\right)^2\ne0\)
\(\Rightarrow x\ne3\)
ĐKXĐ: \(x\ne3\)
\(P=\frac{x^3-3x^2+3x-9}{x^2-6x+9}\)
\(P=\frac{\left(x-3\right)\left(x^2+3\right)}{\left(x-3\right)\left(x-3\right)}\)
\(P=\frac{x^2+3}{x-3}\)
b) +) x = 2
\(P=\frac{2^2+3}{2-3}=-7\)
+) x = -3
\(P=\frac{\left(-3\right)^2+3}{-3-3}=1\)
Bạn nhân biểu thức lên 2 lần (mình đặt là A nên nhân 2 lần là 2A)
Nhóm theo hằng đảng thức ta được (x-y)^2 +(x-2)^2 +(y-2)^2 +10
Bạn chứng minh nó luôn lớn hơn hoặc bằng 10 với mọi x,y vì mỗi bình phương luôn lớn hơn 0 và công 10 nên lớn hơn hoặc bằng 10 => 2A>=10 => A>= 5
Dấu bằng xảy ra khi và chỉ khi x=y=2
\(x^2+y^2-xy-2x-2y+9=x^2+y^2+2xy-2x-2y+9-3xy\)
\(=\left(x+y\right)^2-2\left(x+y\right)+9-3xy=\left(x+y-2\right)\left(x+y\right)+9-3xy.\)
\(đếnđâytịt\)
b
c, =3 dễ
\(\frac{3x^2-6x+9}{x^2-2x+3}=\frac{3\left(x^2-2x+3\right)}{x^2-2x+3}=3\)
Câu 3 :
\(a,A=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}\right):\frac{2x}{5x-5}\) ĐKXđ : \(x\ne\pm1\)
\(A=\left(\frac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)^2}{\left(x+1\right)\left(x-1\right)}\right):\frac{2x}{5\left(x-1\right)}\)
\(A=\left(\frac{x^2+2x+1-x^2+2x-1}{\left(x-1\right)\left(x+1\right)}\right).\frac{5\left(x-1\right)}{2x}\)
\(A=\frac{4x}{\left(x-1\right)\left(x+1\right)}.\frac{5\left(x-1\right)}{2x}\)
\(A=\frac{10}{x+1}\)
\(B=\left(\frac{x}{3x-9}+\frac{2x-3}{3x-x^2}\right).\frac{3x^2-9x}{x^2-6x+9}.\)
ĐKXđ : \(x\ne0;x\ne3\)
\(B=\left(\frac{x}{3\left(x-3\right)}+\frac{2x-3}{x\left(3-x\right)}\right).\frac{3x\left(x-3\right)}{x^2-6x+9}\)
\(B=\left(\frac{x^2}{3x\left(x-3\right)}+\frac{9-6x}{3x\left(x-3\right)}\right).\frac{3x\left(x-3\right)}{x^2-6x+9}\)
\(B=\frac{x^2-6x+9}{3x\left(x-3\right)}.\frac{3x\left(x-3\right)}{x^2-6x+9}=1\)
\(-B=\left(x^2-3x\right)\left(x^2-3x+10\right)-2010=\left(x^2-3x+5\right)^2-2035\).
Ta có \(x^2-3x+5=\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}>0\forall x\).
Do đó \(-B\ge\left(\dfrac{11}{4}\right)^2-2035=\dfrac{-32439}{16}\Rightarrow B\le\dfrac{32439}{16}\).
...