Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a
\(ĐKXĐ:x\ne3;x\ne-3;x\ne0\)
b
\(A=\left(\frac{9}{x^3-9x}+\frac{1}{x+3}\right):\left(\frac{x-3}{x^2+3x}-\frac{x}{3x+9}\right)\)
\(=\left[\frac{9}{x\left(x-3\right)\left(x+3\right)}+\frac{1}{x+3}\right]:\left[\frac{x-3}{x\left(x+3\right)}-\frac{x}{3\left(x+3\right)}\right]\)
\(=\frac{9+x^2-3x}{x\left(x-3\right)\left(x+3\right)}:\frac{3x-9-x^2}{3x\left(x+3\right)}\)
\(=\frac{9+x^2-3x}{x\left(x-3\right)\left(x+3\right)}\cdot\frac{3x\left(x+3\right)}{-\left(9-3x+x^2\right)}=\frac{-3}{x-3}\)
c
Với \(x=4\Rightarrow A=-3\)
d
Để A nguyên thì \(\frac{3}{x-3}\) nguyên
\(\Rightarrow3⋮x-3\)
Làm nốt.
\(a,\)\(đkxđ\Leftrightarrow\)\(\hept{\begin{cases}x+3\ne0\\x-3\ne0\end{cases}}\)\(\Rightarrow x\ne\pm3\)
\(b,\)\(B=\frac{5}{x+3}+\frac{3}{x-3}-\frac{5x+3}{x^2-9}\)
\(=\frac{5\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}+\frac{3\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{5x+3}{\left(x-3\right)\left(x+3\right)}\)
\(=\frac{5x-15+3x+9-5x-3}{\left(x-3\right)\left(x+3\right)}\)
\(=\frac{3x-9}{\left(x-3\right)\left(x+3\right)}=\frac{3\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{3}{x+3}\)
\(c,\)Tại x = 6, ta có :
\(B=\frac{3}{x+3}=\frac{3}{6+3}=\frac{3}{9}=\frac{1}{3}\)
Vậy tại x = 6 thì B = 3
\(d,\)Để \(B\in Z\Rightarrow\frac{3}{x+3}\in Z\Rightarrow x+3\inƯ_3\)
Mà \(Ư_3=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow\)TH1 : \(x+3=1\Rightarrow x=-2\)
Th2: \(x+3=-1\Rightarrow x=-4\)
Th3 : \(x+3=3\Rightarrow x=0\)
TH4 \(x+3=-3\Rightarrow x=-6\)
Vậy để \(B\in Z\)thì \(x\in\left\{-6;-4;-2;0\right\}\)
a)Để B đc xác định thì :x+3 khác 0
x-3 khác 0
x^2-9 khác 0
=>x khác -3
x khác 3
b) Kết Qủa BT B là:3/x+3
Vì để 7/ (x^2-x+1) nguyên thì x^2-x+1 thuộc ước của 7 nên ta có
x^2-x+1 | 7 | -7 | 1 | -1 |
x | 3;-2 | ko có giá trị | 0 | ko có giá trị |
Vậy phương trình có tập nghiệm s={3;0;-2}
nhớ k nha
Ta có : \(B=\frac{27-2x}{12-x}=\frac{2\left(12-x\right)+3}{12-x}=2+\frac{3}{12-x}\)
Xét \(x>12\)thì B < 0 (1)
Xét x < 12 thì mẫu 12 - x là số nguyên dương . Phân số B có tử và mẫu đều dương,tử không đổi nên
B lớn nhất \(\Leftrightarrow\)mẫu 12 - x nhỏ nhất \(\Leftrightarrow\)12 - x = 1 \(\Leftrightarrow\)x = 11
Thay x = 11 ta có : \(2+\frac{3}{12-11}=2+\frac{3}{1}=5\)
Khi đó B = 5 (2)
So sánh 1 và 2 , ta thấy GTLN của B bằng 5 khi và chỉ khi x = 11
d> Ta có: \(\frac{-1}{x-2}\)( Theo a )
Để phân thức là số nguyên <=> -1 chia hết cho x-2 => x-2 thuộc Ư(-1)=+-1
*> X-2=1 => X=3 (TMĐK)
*> X-2=-1 => X=1 (TMĐK)
Lớp 8 trình bày kiểu khác, thôi thì cứ tạm cách này vậy >>:
Để A \(\in\) Z
\(\Rightarrow\)x3-x2+2 \(⋮\) x-1
\(\Rightarrow\)x2(x-1)+2 \(⋮\) x-1
\(\Rightarrow\)2 \(⋮\) x-1
\(\Rightarrow\)x-1 \(\in\) Ư(2)
\(\Rightarrow\)x-1 \(\in\) {\(\pm\)1; \(\pm\)2}
Lập bảng:
x-1 | -1 | 1 | -2 | 2 |
x | 0 | 2 | -1 | 3 |
Vậy x \(\in\) {-1;1;-2;2}
a) Rút gọn :
\(ĐKXĐ:x\ne\pm5\)
Ta có : \(P=\left(\frac{x}{\left(x-5\right)\left(x+5\right)}-\frac{x-5}{x\left(x+5\right)}\right):\frac{2x-5}{x\left(x+5\right)}-\frac{2x}{5-x}\)
\(=\left(\frac{x^2-\left(x-5\right)\left(x-5\right)}{x\left(x-5\right)\left(x+5\right)}\right):\frac{\left(2x-5\right)\left(x-5\right)+2x^2\left(x+5\right)}{x\left(x+5\right)\left(x-5\right)}\)
\(=\frac{10x-25}{x\left(x-5\right)\left(x+5\right)}\cdot\frac{x\left(x+5\right)\left(x-5\right)}{ }\)
Tui đang định làm tiếp đó, nhưng khẳng định đề này hơi sai sai ở vế bị chia. Bạn xem lại đc k ?