Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.n—3 chia hết cho n—1
==> n—1–2 chia hết chi n—1
Vì n—1 chia hết cho n—1
Nên 2 chia hết cho n—1
==> n—1 € Ư(2)
n—1 € {1;—1;2;—2}
Ta có:
TH1: n—1=1
n=1+1
n=2
TH2: n—1=—1
n=—1+1
n=0
TH3: n—1=2
n=2+1
n=3
TH 4: n—1=—2
n=—2+1
n=—1
Vậy n€{2;0;3;—1}
Nếu bạn chưa học số âm thì không cần viết đâu
bài 1:x.y=-15 => x=3;y=-5
x=-3;y=5
x=5;y=-3
x=-5;y=3
x=-1;y=15
x=1;y=-15
Bài 1 đơn giản rồi nha, chỉ cần liệt kê các gặp số ra là xong
BÀi 2:
ta có:
\(\frac{n-3}{n-1}=\frac{n-1-2}{n-1}=1-\frac{2}{n-1}\)
Để n-3 chia hết cho n-1 <=> \(\frac{2}{n-1}\inℤ\Rightarrow2⋮n-1\)
\(\Rightarrow n-1\inƯ\left(2\right)\)
\(\Rightarrow n-1\in\left\{\pm1;\pm2\right\}\)
ta có bảng sau:
n-1 | -2 | -1 | 1 | 2 |
n | -1 | 0 | 2 | 3 |
\(n\in\left\{-1;0;2;3\right\}\)
y2 + 117 = x2
Dễ thấy : x2 > 117
\(\Rightarrow\) x > 10
Do x nguyên tố nên x lẻ \(\Rightarrow\) x2 lẻ
Mà y2 + 117 = x2 nên y2 chẵn \(\Rightarrow\) y chẵn
Mà y nguyên tố nên y = 2
Thay vào đề bài ta có : 22 + 117 = x2
\(\Rightarrow\) 121 = x2 = 112
\(\Rightarrow\) x = 11 ( thỏa mãn )
Vậy x = 11 ; y = 2
-2/x=y/3
=> -2.3 = xy
xy= -6
Mà x>0>y => x là số nguyên âm còn y là số nguyên dương
Lập bảng ( cái này bn tự lâp)
=> Các cặp số nguyên x,y là: x=-2,y=3 ; x= -3,y=2; x=-1,y=6 ; x=-6,y= 1
Do x-y = 4 => x= 4+y
thjays x=4+y vào x-3/y-2=3/2, có:
x-3/y-2=3/2 = 4+y-3/y-2 = 3/2 = y+1/y-2=3/2
=> 2(y+1)= 3(y-2)
2y+2 = 3y-6
3y-2y = 2+6
y=8
thay y= 8 vào x=4+y, có:
x= 4+ 8 = 12
vạy x=12; y=8
ta co -2*3=x*y=-6
ta co -6=-1*6=-2*3
ma x<0 x thuoc (-2;-1)
y>0 y thuoc (3;6)
thấy đúng thì nha
xy=x-y
xy+y =x
y(x+1) =x
vì x không chia hết cho x+1
=> x+1 =1 => x =0 => y =0
hoặc x+1 =-1 => x =-2 => y(-1) =-2 => y =2
Vậy (x;y) = (0;0);(-2;2)
Vì \(x,y\in z\Rightarrow3x-12;y-5\inƯ\left(7\right)=\left\{\mp1;\mp7\right\}\)
Ta có bảng sau:
3x-12 | 1 | -1 | 7 | -7 |
y-5 | 7 | -7 | 1 | -1 |
x | 13/3 | 11/3 | 19/3 | 5/3 |
y | 12 | -2 | 6 | 4 |
Vì \(x;y\in Z=>\left(x;y\right)\in\varnothing\)
Vậy \(\left(x;y\right)\in\varnothing\)
Bn cs thể ghi đề sai chăng?