Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/1x2 + 1/2x3 +1/3x4 + ......+1/98x99+1/99x100
=1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 +......+ 1/98 - 1/99 + 1/99 + 1/100
=(1-1/100)+(1/2 - 1/2 ) + ( 1/3 - 1/3 ) + ...... + (1/98 - 1/98 ) + ( 1/99 - 1/99 )
= 100/100 - 1/100 + 0 + 0 +.....+ 0 + 0
=99/100
vậy GTBT = 99/100
C = \(\frac{3}{2.3.4}+\frac{3}{3.4.5}+.....+\frac{3}{98.99.100}\)
C = \(3.\left(\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{98.99.100}\right)\)
C = \(3.\frac{1}{2}.\left(\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{98.99.100}\right)\)
C = \(\frac{3}{2}.\left(\frac{4-2}{2.3.4}+\frac{5-3}{3.4.5}+...+\frac{100-98}{98.99.100}\right)\)
C = \(\frac{3}{2}.\left(\frac{4}{2.3.4}-\frac{2}{2.3.4}+\frac{5}{3.4.5}-\frac{3}{3.4.5}+...+\frac{100}{98.99.100}-\frac{99}{98.99.100}\right)\)
C = \(\frac{3}{2}.\left(\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)\)
C = \(\frac{3}{2}.\left(\frac{1}{2.3}-\frac{1}{99.100}\right)\)
C = \(\frac{3}{2}.\frac{1649}{9900}\)
C = \(\frac{1649}{6600}\)
\(\frac{1}{1x2}+\frac{1}{2x3}+...+\frac{1}{99x100}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}=\frac{99}{100}\)
\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}=\frac{99}{100}\)
\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{99}-\frac{1}{100}\)
= \(1-\frac{1}{100}\)
= \(\frac{99}{100}\)
\(\frac{1}{1\times2}+\frac{1}{2\times3}+...+\frac{1}{99\times100}=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}=\frac{99}{100}\)
Cho biểu thức A= 11×2×3 + 12×3×4 + 13×
4×5 +...+ 118×19×20 . So sánh A với 14 .
Dương Đình Hưởng
cố lên mà k
Lời giải :
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{99\cdot100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
ko chép lại đề :
= \(\frac{1}{1}\)- \(\frac{1}{2}\)+ \(\frac{1}{2}\)- \(\frac{1}{3}\)+ \(\frac{1}{3}\)- \(\frac{1}{4}\)+ ......... + \(\frac{1}{98}\)- \(\frac{1}{99}\)+ \(\frac{1}{99}\)- \(\frac{1}{100}\)
= \(1-\frac{1}{100}\)
= \(\frac{99}{100}\)