Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. \(\left|-2\right|^{300}=2^{300};\left|-4\right|^{150}=4^{150}=\left(2^2\right)^{150}=2^{300}\)
Mà \(2^{300}=2^{300}\)
Vậy \(\left|-2\right|^{300}=\left|-4\right|^{150}\).
b. \(\left|-2\right|^{300}=2^{300}=\left(2^3\right)^{100}=8^{100}\)
\(\left|-3\right|^{200}=3^{200}=\left(3^2\right)^{100}=9^{100}\)
Vì 8 < 9 nên 8100 < 9100
Vậy \(\left|-2\right|^{300}<\left|-3\right|^{200}\).
A=20+21+22+...+22010
=>2A=21+22+23+...+22011
=>2A-A=(21+22+23+...+22011)-(20+21+22+...+22010)
=>A=22011-1=B
Vậy A=B
A = 20 + 21 + ..... + 22010
2A = 21 + 22 + ..... + 22011
2A - A = 22011 - 1
Mà B = 22011 - 1
=> A = B
1. Tìm x:
a) 135 - 3 x ( x- 1) = 3^4 + 6^2
x=-2, x=3
b) 3 x ( x + 7 ) = 5^2 + 5
x=-căn bậc hai(89)/2-7/2, x=căn bậc hai(89)/2-7/2
2. So sánh 2^20 và 3^15
2 ^20 < 3 ^15
Câu 1.
C = 5 + 42 + 43 + ... + 42020
a) Xét A = 42 + 43 + ... + 42020
=> 4A = 43 + 44 + ... + 42021
=> 4A - A = 3A
= 43 + 44 + ... + 42021 - ( 42 + 43 + ... + 42020 )
= 43 + 44 + ... + 42021 - 42 - 43 - ... - 42020
= 42021 - 42
=> A = \(\frac{4^{2021}-4^2}{3}\)
Thế vào C ta được : \(C=5+\frac{4^{2021}-4^2}{3}=\frac{15}{3}+\frac{4^{2021}-4^2}{3}=\frac{4^{2021}+15-16}{3}=\frac{4^{2021}-1}{3}\)
b) D = 42021 => \(\frac{D}{3}=\frac{4^{2021}}{3}\)
Vì 42021 - 1 < 42021 => \(\frac{4^{2021}-1}{3}< \frac{4^{2021}}{3}\)
=> C < D/3
c) Dùng kết quả ý a) ta được :
3C + 1 = 42x-6
<=> \(3\cdot\frac{4^{2021}-1}{3}+1=4^{2x-6}\)
<=> 42021 - 1 + 1 = 42x-6
<=> 42021 = 42x-6
<=> 2021 = 2x - 6
<=> 2x = 2027
<=> x = 2027/2
Câu 2.
( x - 1 )( 4 + 22 + 23 + ... + 220 ) = 222 - 221
Xét A = 22 + 23 + ... + 220
=> 2A = 23 + 24 + ... + 221
=> A = 2A - A
= 23 + 24 + ... + 221 - ( 22 + 23 + ... + 220 )
= 23 + 24 + ... + 221 - 22 - 23 - ... - 220
= 221 - 4
Thế vô đề bài ta được
( x - 1 )( 4 + 221 - 4 ) = 222 - 221
<=> ( x - 1 ).221 = 221( 2 - 1 )
<=> x - 1 = 1
<=> x = 2
A=1+2+22+23+...+22008
=2-1+22-2+23-22+24-23+...+22009-22008
=22009-1=B
vậy A=B
\(S=2^0+2+2^2+...+2^9\)
Ta có phép tính : \(5\times28=140\)
Mà ta thấy : \(2^9>140\Rightarrow2^0+2+2^2+...+2^9>140\)
\(\Rightarrow S>5.28\)
Ta có:
\(5.28=140\)
Mà \(2^9=512>140\)
\(\Rightarrow2^0+2^1+2^2+2^3+...+2^9>5.28\)
~ Rất vui vì giúp đc bn ~
A= 1 + 2 + 22 + 23+......+22022
2A = 2 + 22+23+24+.....+22023
2A - A = 22023-1 = 22021.22-1 = 22021.4-1
- > A < 5.22021
sai hay đúng ko bt nha ( mik lm bừa )
a, \(A=2^0+2^1+2^2+...+2^{2010}\)
\(=>2A=2^1+2^2+2^3+...+2^{2011}\)
\(=>2A-A=\left(2^1+2^2+2^3+...+2^{2011}\right)-\left(2^0+2^1+2^2+...+2^{2010}\right)\)
\(=>2A=2^{2011}-2^0=2^{2011}-1\)
Vì \(2^{2011}-1=2^{2011}-1\)
\(=>A=B\)
a) Ta có : A=1+2+22+...+22010
2A=2+22+23+...+22011
\(\Rightarrow\) 2A-A=(2+22+23+...+22011)-(1+2+22+...+22010)
\(\Rightarrow\) A=22011-1
Mà B=22011-1
\(\Rightarrow\)A=B
Vậy A=B.
b) Ta có : A=2009.2011
B=20102=2010.2010
\(\Rightarrow\)A=2009.2010+2009
B=2009.2010+2010
Vì 2009<2010 nên 2009.2010+2009<2009.2010+2010
hay A<B
Vậy A<B.
\(2A=2+1+\frac{1}{2}+...+\frac{1}{2^9}\Rightarrow2A-A=\left(2+1+\frac{1}{2}+..+\frac{1}{2^9}\right)-\left(1+\frac{1}{2}+...+\frac{1}{2^{10}}\right).\)
\(\Leftrightarrow A=2-\frac{1}{2^{10}}=\frac{2^{11}-1}{2^{10}}=\frac{2^{12}-2}{2^{11}}>\frac{1}{2^{11}}\)
< , ủng hộ mk nha
kho kho kho kho