K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2019

â, -4/9(7/15+8/15)=-4/9

b,-5/4(16/25+9/25)=-5/4

,..... 

dài quá mik làm ko hết 

hok tốt

22 tháng 7 2020

a) \(22\frac{1}{2}\cdot\frac{7}{9}+50\%-1,25\)

\(=\frac{45}{2}\cdot\frac{7}{9}+\frac{50}{100}-\frac{125}{100}\)

\(=\frac{5}{2}\cdot\frac{7}{1}+\frac{1}{2}-\frac{5}{4}\)

\(=\frac{35}{2}+\frac{1}{2}-\frac{5}{4}=18-\frac{5}{4}=\frac{67}{4}\)

b) \(1,4\cdot\frac{15}{49}-\left(\frac{4}{5}+\frac{2}{3}\right):2\frac{1}{5}\)

\(=\frac{7}{5}\cdot\frac{15}{49}-\frac{22}{15}:\frac{11}{15}\)

\(=\frac{1}{1}\cdot\frac{3}{7}-\frac{22}{15}\cdot\frac{15}{11}\)

\(=\frac{3}{7}-2=\frac{3-14}{7}=\frac{-11}{7}\)

c) \(\left(-\frac{1}{2}\right)^2-\frac{7}{16}:\frac{7}{4}+75\%\)

\(=\frac{1}{4}-\frac{7}{16}\cdot\frac{4}{7}+\frac{75}{100}\)

\(=\frac{1}{4}-\frac{1}{4}+\frac{3}{4}=\frac{3}{4}\)

Bài 2  Bạn tự làm nhé

22 tháng 7 2020

1.a,\(22\frac{1}{2}.\frac{7}{9}+50\%-1,25\)

\(=\frac{45}{2}.\frac{7}{9}+\frac{1}{2}-\frac{5}{4}\)

\(=\frac{35}{2}+\frac{1}{2}-\frac{5}{4}\)

\(=\frac{67}{4}\)

b,Các phép tính khác làm tương tự

Đổi các số ra hết thành phân số,có ngoặc thì lm ngoặc trc,Xoq đến nhân chia trước dồi mới cộng trừ

c,tương tự

2.

a,\(1\frac{3}{5}+\frac{7}{12}\div x=\frac{-9}{4}\)

\(\frac{8}{5}+\frac{7}{12}\div x=\frac{-9}{4}\)

\(\frac{7}{12}\div x=\frac{-77}{20}\)

Đến đây dễ bạn tự làm

b,\(\left(2\frac{4}{5}.x+50\right)\div\frac{2}{3}=-51\)

\(\left(\frac{14}{5}x+50\right)\div\frac{2}{3}=-51\)

\(\frac{14}{5}x+50=-34\)

\(\frac{14}{5}x=-84\)

Tự làm tiếp

c,\(\left|\frac{3}{4}.x-\frac{1}{2}\right|=\frac{1}{4}\)\(\Rightarrow\left|\frac{3}{4}x-\frac{1}{2}\right|=\varnothing\)

19 tháng 5 2019

\(A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}\)

\(\Rightarrow A>\frac{1}{2}.\frac{2}{3}.\frac{4}{5}...\frac{98}{99}\)

\(\Rightarrow A^2>\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}...\frac{98}{99}.\frac{99}{100}\)

\(\Rightarrow A^2>\frac{1}{100}=\frac{1}{10^2}\)

Vậy \(A>\frac{1}{10}\)

19 tháng 5 2019

\(A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{9999}{10000}\)

\(\Rightarrow A>\frac{1}{2}.\frac{2}{3}.\frac{4}{5}...\frac{9998}{9999}\)

\(\Rightarrow A^2>\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}...\frac{9998}{9999}.\frac{9999}{10000}\)

\(\Rightarrow A^2>\frac{1}{10000}=\frac{1}{100^2}\)

\(VayA>\frac{1}{100}=B\)

7 tháng 5 2018

Bài 1 : 

Ta có :

\(A=\frac{10^{17}+1}{10^{18}+1}=\frac{\left(10^{17}+1\right).10}{\left(10^{18}+1\right).10}=\frac{10^{18}+10}{10^{19}+10}\)

Mà : \(\frac{10^{18}+10}{10^{19}+10}>\frac{10^{18}+1}{10^{19}+1}\)

Mà \(A=\frac{10^{18}+10}{10^{19}+10}\)nên \(A>B\)

Vậy \(A>B\)

Bài 2 :

Ta có :

\(S=\frac{2013}{2014}+\frac{2014}{2015}+\frac{2015}{2016}+\frac{2016}{2013}\)

\(\Rightarrow S=\frac{2014-1}{2014}+\frac{2015-1}{2015}+\frac{2016-1}{2016}+\frac{2013+3}{2013}\)

\(\Rightarrow S=1-\frac{1}{2014}+1-\frac{1}{2015}+1-\frac{1}{2016}+1+\frac{3}{2013}\)

\(\Rightarrow S=4+\frac{3}{2013}-\left(\frac{1}{2014}+\frac{1}{2015}+\frac{1}{2016}\right)\)

Vì \(\frac{1}{2013}>\frac{1}{2014}>\frac{1}{2015}>\frac{1}{2016}\)nên  \(\frac{3}{2013}-\left(\frac{1}{2014}+\frac{1}{2015}+\frac{1}{2016}\right)>0\)

Nên : \(M>4\)

Vậy \(M>4\)

Bài 3 : 

Ta có :

\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.......+\frac{1}{100^2}\)

Suy ra : \(A< \frac{1}{1.3}+\frac{1}{2.4}+\frac{1}{3.5}+....+\frac{1}{99.101}\)

\(\Rightarrow A< \frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{2.4}+......+\frac{2}{99.101}\right)\)

\(\Rightarrow A< \frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-......-\frac{1}{101}\right)\)

\(\Rightarrow A< \frac{1}{2}.\left[\left(1+\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{99}\right)-\left(\frac{1}{3}+\frac{1}{4}+......+\frac{1}{101}\right)\right]\)

\(\Rightarrow A< \frac{1}{2}.\left(1+\frac{1}{2}-\frac{1}{100}-\frac{1}{101}\right)\)

\(\Rightarrow A< \frac{1}{2}.\left(1+\frac{1}{2}\right)\)

\(\Rightarrow A< \frac{3}{4}\)

Vậy \(A< \frac{3}{4}\)

Bài 4 :

\(a)A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+....+\frac{1}{2015.2017}\)

\(\Rightarrow A=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+.....+\frac{1}{2015.2017}\right)\)

\(\Rightarrow A=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.....+\frac{1}{2015}-\frac{1}{2017}\right)\)

\(\Rightarrow A=\frac{1}{2}.\left(1-\frac{1}{2017}\right)\)

\(\Rightarrow A=\frac{1}{2}.\frac{2016}{2017}\)

\(\Rightarrow A=\frac{1008}{2017}\)

Vậy \(A=\frac{1008}{2017}\)

\(b)\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+......+\frac{1}{x\left(x+2\right)}=\frac{1008}{2017}\)

\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+......+\frac{2}{x.\left(x+2\right)}=\frac{2016}{2017}\)

\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.....+\frac{1}{x}-\frac{1}{x+2}=\frac{2016}{2017}\)

\(1-\frac{1}{x+2}=\frac{2016}{2017}\)

\(\Rightarrow\frac{1}{x+2}=1-\frac{2016}{2017}\)

\(\Rightarrow\frac{1}{x+2}=\frac{1}{2017}\)

\(\Rightarrow x+2=2017\)

\(\Rightarrow x=2017-2=2015\)

Vậy \(x=2015\)

17 tháng 4 2017

Dài thế bạn

18 tháng 4 2017

bạn trả lời được 1 bài cũng đc

4 tháng 4 2019

Câu a: Câu hỏi của Trần H khánh my - Toán lớp 6 - Học toán với OnlineMath

Câu b: \(\frac{2}{9}=\frac{4}{18}\)

Vì \(\frac{4}{18}< \frac{4}{15}\)nên \(\frac{2}{9}< \frac{4}{15}\)

Câu c: Đặt số trung gian là 1.

Ta có: \(\frac{2010}{2011}< 1\)

và \(\frac{2011}{2010}>1\)

suy ra \(\frac{2010}{2011}< \frac{2011}{2010}\)

4 tháng 4 2019

ko quy đồng nhé

11 tháng 4 2015

Vì A > 1; B < 1 nên A > B.

22 tháng 5 2015

bao quynh Cao bạn ơi hình như bn làm sai đề ạ 7/4 mà sao lại 4/7 ạ