Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Rút gọn.
\(B=\dfrac{x^{39}x^{36}x^{33}...x^31}{x^{40}x^{38}x^{36}...x^21}=\dfrac{x^{\left(39+36+33+...+3\right)}}{x^{\left(40+38+36+...+2\right)}}\)
ta có: \(39+36+33+...+3=\dfrac{\left(39+3\right)\left(\dfrac{39-3}{3}+1\right)}{2}=273\)
\(40+38+36+....+2=\dfrac{\left(40+2\right)\left(\dfrac{40-2}{2}+1\right)}{2}=420\)
=> \(B=\dfrac{x^{273}}{x^{420}}=\dfrac{1}{x^{147}}\)
Tương tự như B => \(A=\dfrac{x^{4560}}{x^{496}}=x^{4064}\)
Ta có:
\(B=\dfrac{x^{\left(39+36+33+....+3\right)}}{x^{\left(40+38+36+....+2\right)}}\)
\(39+36+33+....+3=\dfrac{\left(39+3\right)\left(\dfrac{39-3}{3}+1\right)}{2}=273\)
\(40+38+36+....+2=\dfrac{\left(40+2\right)\left(\dfrac{40-2}{2}+1\right)}{2}=420\)
\(\Rightarrow B=\dfrac{x^{273}}{x^{420}}=\dfrac{1}{x^{147}}\)
tương tự => \(A=\dfrac{x^{4560}}{x^{496}}=x^{4064}\)
a.)Đkxđ bạn tự tìm nha!!!
A=\(\left(\frac{1}{x-1}-\frac{x}{1-x^3}.\frac{x^2+x+1}{x+1}\right):\frac{2x+1}{x^2+2x+1}\)
\(\Leftrightarrow\)\(\left(\frac{1}{x-1}+\frac{x}{\left(x-1\right)\left(x^2+x+1\right)}.\frac{x^2+x+1}{x+1}\right):\frac{2x+1}{x^2+2x+1}\)
\(\Leftrightarrow\)\(\left(\frac{1}{x-1}+\frac{x}{\left(x-1\right)\left(x+1\right)}\right):\frac{2x+1}{x^2+x+1}\)
\(\Leftrightarrow\)\(\left(\frac{x+1}{\left(x-1\right)\left(x+1\right)}+\frac{x}{\left(x-1\right)\left(x+1\right)}\right):\frac{2x+1}{x^2+x+1}\)
\(\Leftrightarrow\)\(\frac{2x+1}{\left(x-1\right)\left(x+1\right)}:\frac{2x+1}{x^2+2x+1}\)
\(\Leftrightarrow\)\(\frac{2x+1}{\left(x-1\right)\left(x+1\right)}.\frac{\left(x+1\right)^2}{2x+1}\)
\(\Leftrightarrow\)\(\frac{x+1}{x-1}\left(tm\text{đ}k\right)\)
b.)Thay \(x=\frac{1}{2}\)vào A \(\Rightarrow\)\(A=-3\)
a) Đk: x > 0 và x khác +-1
Ta có: A = \(\left(\frac{x+1}{x}-\frac{1}{1-x}-\frac{x^2-2}{x^2-x}\right):\frac{x^2+x}{x^2-2x+1}\)
A = \(\left[\frac{\left(x-1\right)\left(x+1\right)+x-x^2+2}{x\left(x-1\right)}\right]:\frac{x\left(x+1\right)}{\left(x-1\right)^2}\)
A = \(\frac{x^2-1+x-x^2+2}{x\left(x-1\right)}\cdot\frac{\left(x-1\right)^2}{x\left(x+1\right)}\)
A = \(\frac{x+1}{x}\cdot\frac{x-1}{x\left(x+1\right)}=\frac{x-1}{x^2}\)
b) Ta có: A = \(\frac{x-1}{x^2}=\frac{1}{x}-\frac{1}{x^2}=-\left(\frac{1}{x^2}-\frac{1}{x}+\frac{1}{4}\right)+\frac{1}{4}=-\left(\frac{1}{x}-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\forall x\)
Dấu "=" xảy ra <=> 1/x - 1/2 = 0 <=> x = 2 (tm)
Vậy MaxA = 1/4 <=> x = 2
Bài này cậu hỏi lâu rồi nên không biết cậu muốn biết lời giải bài đó nữa không vậy?
a)\(\frac{x^3-x}{3x+3}=\frac{x.\left(x^2-1\right)}{3.\left(x+1\right)}=\frac{x.\left(x-1\right).\left(x+1\right)}{3.\left(x+1\right)}=\frac{x.\left(x+1\right)}{3}=\frac{x^2+x}{3}\)
Bài này từ 2 năm trước rồi mà
công nhận