K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2018

a)  \(5+\sqrt{10}-\sqrt{5}=\sqrt{5}.\left(\sqrt{5}+\sqrt{2}-1\right)\)

b)  ĐK:  \(a\ge0\)

\(a-4\sqrt{a}-5=a+\sqrt{a}-5\sqrt{a}-5=\left(\sqrt{a}+1\right)\left(\sqrt{a}-5\right)\)

c)  ĐK:  \(a\ge0\)

\(a+12\sqrt{a}+32=a+8\sqrt{a}+4\sqrt{a}+32=\left(\sqrt{a}+8\right)\left(\sqrt{a}+4\right)\)

d)  ĐK: \(a\ge0\)

\(a-5\sqrt{a}+6=a-2\sqrt{a}-3\sqrt{a}+6=\left(\sqrt{a}-2\right)\left(\sqrt{a}-3\right)\)

5 tháng 10 2020

a) \(A=\frac{1}{2}\sqrt{32}+\sqrt{98}-\frac{1}{6}\sqrt{18}=\frac{1}{2}\sqrt{4^2.2}+\sqrt{7^2.2}-\frac{1}{6}.\sqrt{3^2.2}\)

\(=\frac{1}{2}\sqrt{4^2}.\sqrt{2}+\sqrt{7^2}.\sqrt{2}-\frac{1}{6}.\sqrt{3^2}.\sqrt{2}\)\(=\frac{1}{2}.4\sqrt{2}+7\sqrt{2}-\frac{1}{6}.3.\sqrt{2}\)\(=2.\sqrt{2}+7\sqrt{2}-\frac{1}{2}\sqrt{2}=\left(2+7-\frac{1}{2}\right)\sqrt{2}=\frac{17}{2}\sqrt{2}\)

5 tháng 8 2018

a) \(\sqrt{6+2\sqrt{5}}+\sqrt{6-2\sqrt{5}}=\sqrt{1+2\sqrt{5}+\left(\sqrt{5}\right)^2}+\sqrt{1-2\sqrt{5}+\left(\sqrt{5}\right)^2}\)\(=\sqrt{\left(1+\sqrt{5}\right)^2}+\sqrt{\left(1-\sqrt{5}\right)^2}=1+\sqrt{5}-\left(1-\sqrt{5}\right)=1+\sqrt{5}-1+\sqrt{5}=2\sqrt{5}\)

5 tháng 8 2018

a)  \(\sqrt{6+2\sqrt{5}}+\sqrt{6-2\sqrt{5}}\)

\(=\sqrt{\left(\sqrt{5}+1\right)^2}+\sqrt{\left(\sqrt{5}-1\right)^2}\)

\(=\sqrt{5}+1+\sqrt{5}-1=2\sqrt{5}\)

b) \(\sqrt{13+4\sqrt{10}}+\sqrt{13-4\sqrt{10}}\)

\(=\sqrt{\left(2\sqrt{2}+\sqrt{5}\right)^2}+\sqrt{\left(2\sqrt{2}-\sqrt{5}\right)^2}\)

\(=2\sqrt{2}+\sqrt{5}+2\sqrt{2}-\sqrt{5}=4\sqrt{2}\)

c) \(\sqrt{8\sqrt{3}}-2\sqrt{25\sqrt{12}}+4\sqrt{\sqrt{192}}\)

\(=2\sqrt{2\sqrt{3}}-10\sqrt{2\sqrt{3}}+8\sqrt{2\sqrt{3}}=0\)

2 tháng 8 2018

\(a,\sqrt{mn}+1+\sqrt{m}+\sqrt{n}\)

\(=\sqrt{mn}+\sqrt{m}+\sqrt{n}+1\)

\(=\sqrt{m}\left(\sqrt{n}+1\right)+\sqrt{n}+1\)

\(=\left(\sqrt{n}+1\right)\left(\sqrt{m}+1\right)\)

\(b,a+b-2\sqrt{ab}-25\)

\(=\left(\sqrt{a}-\sqrt{b}\right)^2-5^2\)

\(=\left(\sqrt{a}-\sqrt{b}-5\right)\left(\sqrt{a}-\sqrt{b}+5\right)\)

\(c,m-2\sqrt{m}-3\)

\(=m-2\sqrt{m}+1-4\)

\(=\left(\sqrt{m}-1\right)^2-2^2\)

\(=\left(\sqrt{m}-1+2\right)\left(\sqrt{m}-1-2\right)\)

\(=\left(\sqrt{m}+1\right)\left(\sqrt{m}-3\right)\)

\(d,a+6\sqrt{a}+8\)

\(=a+6\sqrt{a}+9-1\)

\(=\left(\sqrt{a}+3\right)^2-1\)

\(=\left(\sqrt{a}+3+1\right)\left(\sqrt{a}+3-1\right)\)

\(=\left(\sqrt{a}+4\right)\left(\sqrt{a}+2\right)\)

\(e,\sqrt{m}-m^2=\sqrt{m}\left[1-\left(\sqrt{m}\right)^3\right]\)

\(=\sqrt{m}\left(1-\sqrt{m}\right)\left(1+\sqrt{m}+m\right)\)

\(f,p^2+\sqrt{p}=\sqrt{p}\left[\left(\sqrt{p}\right)^3+1\right]\)

\(=\sqrt{p}\left(\sqrt{p}+1\right)\left(p-\sqrt{p}+1\right)\)

=.= hok tốt !!

4 tháng 7 2015

hihi

a)\(a-b=\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)\)

b)\(=\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)\)

c) \(\sqrt{a}^3-\sqrt{b}^3=\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)\)

4 tháng 7 2015

a) \(a-b=-\left(b-a\right)=a+\left(-b\right)\)

b) \(a\sqrt{b}+b\sqrt{a}=b\sqrt{a}+a\sqrt{b}\)

c) \(a\sqrt{a}-b\sqrt{b}=-\left(b\sqrt{b}-a\sqrt{a}\right)=a\sqrt{a}+\left(-b\sqrt{b}\right)\)

11 tháng 10 2020

a= 98 b=35 c=122 và d=129

11 tháng 10 2020

a, \(5+\sqrt{5}=\sqrt{5}\left(\sqrt{5}+1\right)\)

b, \(a-2\sqrt{a}=\sqrt{a}\left(\sqrt{a}-2\right)\)

c, \(x-\sqrt{xy}=\sqrt{x}\left(\sqrt{x}-\sqrt{y}\right)\)

d, \(x-y-\sqrt{x}-\sqrt{y}\)

\(=\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)-\left(\sqrt{x}+\sqrt{y}\right)\)

\(=\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}-1\right)\)

5 tháng 7 2015

\(\text{a) }\sqrt{a^3+b^3}+\sqrt{a^2-b^2}=\sqrt{\left(a+b\right)\left(a^2-ab+b^2\right)}+\sqrt{\left(a+b\right)\left(a-b\right)}\)

\(=\sqrt{a+b}\left(\sqrt{a^2-ab+b^2}+\sqrt{a-b}\right)\)

\(\text{b) }\sqrt{ax}-\sqrt{by}+\sqrt{bx}-\sqrt{xy}\text{ không phân tích được.}\)

\(\text{c) }=\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)+\left(\sqrt{x}-\sqrt{y}\right).\sqrt{xy}\)

\(=\left(\sqrt{x}-\sqrt{y}\right)\left(x+y+2\sqrt{xy}\right)\)\(=\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)^2\)

\(\text{d) }a+5\sqrt{a}+4=\sqrt{a}.\sqrt{a}+\sqrt{a}+4\sqrt{a}+4=\sqrt{a}\left(\sqrt{a}+1\right)+4\left(\sqrt{a}+1\right)\)

\(=\left(\sqrt{a}+1\right)\left(\sqrt{a}+4\right)\)

24 tháng 6 2019

a,\(x\sqrt{y}+y\sqrt{x}=\sqrt{x}\sqrt{y}.\left(\sqrt{x}+\sqrt{y}\right).\)

c,\(\sqrt{a}-a^2=\sqrt{a}.\left(1-a\sqrt{a}\right)\)

d,\(x-5\sqrt{x}+6=x-3\sqrt{x}-2\sqrt{x}+6\)

\(=\sqrt{x}.\left(\sqrt{x}-3\right)-2.\left(\sqrt{x}-3\right)\)\(=\left(\sqrt{x}-3\right).\left(\sqrt{x}-2\right)\)