Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^5+x+1=\left(x^5+x+1\right)=x\left(x^4+1+\frac{1}{x}\right)\)
b) và c) Tương tự nha
Chả biết đúng hay sai :v tại dùng máy tính tính ra kết quả rồi phân tích ngược lại
a) \(x^5+x+1=x^5+x^4+x^3-x^3-x^2-x+x^2+x+1\)
\(=x^3\left(x^2+x+1\right)+x\left(x^2+x+1\right)-\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^3-x-1\right)\)
b)\(x^4+2002x^2+2001x+2002=x^4+x^3+1-x^3+x^2+x+2002x^2+2002x+1\)
\(=x^2\left(x^2+x+1\right)-x\left(x^2+x+1\right)+2002\left(x^2+x+1\right)\)
\(=\left(x^2-x+2002\right)\left(x^2+x+1\right)\)
c)Tương tự câu a),ta phân tích được:
\(x^{11}+x^7+1=\left(x^2+x+1\right)\left(x^9-x^8+x^6-x^4+x^3-x+1\right)\)
Chả biết đúng hay sai :v làm thử
\(a)\) Với \(\hept{\begin{cases}x+1\ge0\\x\ge0\\x-1\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge-1\\x\ge0\\x\ge1\end{cases}\Leftrightarrow}x\ge1}\) ta có :
\(\left(x+1\right)^2+x^2+\left(x-1\right)^2=2\)
\(\Leftrightarrow\)\(\left(x+1+x-1\right)^2-2\left(x+1\right)\left(x-1\right)+x^2=2\)
\(\Leftrightarrow\)\(4x^2-2x^2+2+x^2=2\)
\(\Leftrightarrow\)\(3x^2=0\)
\(\Leftrightarrow\)\(x^2=0\)
\(\Leftrightarrow\)\(x=0\) ( không thỏa mãn )
Với \(\hept{\begin{cases}x+1< 0\\x< 0\\x-1< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x< -1\\x< 0\\x< 1\end{cases}\Leftrightarrow}x< -1}\) ta có :
\(\left[-\left(x+1\right)\right]^2+\left(-x\right)^2+\left[-\left(x-1\right)\right]^2=2\)
\(\Leftrightarrow\)\(\left(x+1\right)^2+x^2+\left(x-1\right)^2=2\)
Đến đây giải giống như trên nha bạn
\(\Leftrightarrow\)\(x=0\) ( không thỏa mãn )
Vậy không có giá trị x thỏa mãn đề bài
Chúc bạn học tốt ~
a ) A = 4x2 + 4x + 11
= 4x2 + 4x + 1 + 10
= ( 2x + 1 )2 + 10
Nhận xét : ( 2x + 1 )2 > 0 với mọi x thuộc R
=> ( 2x + 1 )2 + 10 > 10
=> A > 10
=> Giá trị nhỏ nhất của A là 10
Dấu = xảy ra khi : ( 2x + 1 )2 = 0
=> 2x + 1 = 0
=> x = \(-\frac{1}{2}\)
Vậy giá trị nhỏ nhất của A là 10 khi x = \(-\frac{1}{2}\)
b ) B = ( x - 1 ) ( x + 2 ) ( x + 3 ) ( x + 6 )
= ( x - 1 ) ( x + 6 ) ( x + 2 ) ( x + 3 )
= ( x2 + 5x - 6 ) ( x2 + 5x + 6 )
Đặt t = x2 + 5x
=> B = ( t - 6 ) ( t + 6 )
= t2 - 36
Nhận xét :
t2 > 0 với mọi t thuộc R
=> t2 - 36 > - 36
=> B > - 36
=> Giá trị nhỏ nhất của B là - 36
Dấu = xảy ra khi : t2 = 0
=> t = 0
mà t = x2 + 5x
=> x2 + 5x = 0
=> x ( x + 5 ) = 0
=> \(\orbr{\begin{cases}x=0\\x+5=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)
Vậy giá trị nhỏ nhất của B là - 36 khi \(x\in\left\{0;-5\right\}\)
c ) C = x2 - 2x + y2 - 4y + 7
= ( x2 - 2x + 1 ) + ( y2 - 4y + 4 ) + 2
= ( x - 1 )2 + ( y - 2 )2 + 2
Nhận xét :
( x - 1 )2 > 0 với mọi x thuộc R
( y - 2 )2 > 0 với mọi y thuộc R
=> ( x - 1 )2 + ( y - 2 )2 > 0
=> ( x - 1 )2 + ( y - 2 )2 + 2 > 2
=> C > 2
=> Giá trị nhỏ nhất của C là 2
Dấu = xảy ra khi : \(\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y-2\right)^2=0\end{cases}}\)
=> \(\hept{\begin{cases}x-1=0\\y-2=0\end{cases}}\)
=> \(\hept{\begin{cases}x=1\\y=2\end{cases}}\)
Vậy giá trị nhỏ nhất của C là 2 khi x = 1 và y = 2
a,x^4-8x^2+16=(x-4)^2
b,(2x+y)^3+(2v-y)^3=(2x+y+2x-y)(4x^2+4xy+y^2-4x^2+y^2+4x^2-4xy+y^2)=4x^2.(3y^2+4x^2)=4x^2.(9y^4+16x^4).(9y^4-16x^4)
c,x^3-6x^2y+12xy^2-8y^3=(x-2y)^3
d,x^4-1=(x^2+1).(x^2-1)
e,a^6-b^6=(a^3+b^3).(a^3-b^3)
f,4b^2c^2-(b^2+c^2-a^2)^2=(2bc+b+c-a).(2bc-b-c+a)
a) \(x^2+4x+3\)
\(=x^2+3x+x+3\)
\(=x\left(x+3\right)+\left(x+3\right)\)
\(=\left(x+1\right)\left(x+3\right)\)
Bài 1:
a) \(3x^2-9x=3x\left(x-3\right)\)
b) \(x^2-4x+4=\left(x-2\right)^2\)
c) \(x^2+6x+9-y^2=\left(x+3\right)^2-y^2=\left(x-y+3\right)\left(x+y+3\right)\)
Bài 2:
a) \(101^2-1=\left(101-1\right)\left(101+1\right)=102.100=10200\)
b) \(67^2+66.67+33^2=67^2+2.33.67+33^2\)
\(=\left(67+33\right)^2=100^2=10000\)
Bài 3:
\(x\left(x-3\right)+2\left(x+3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-2\end{cases}}\)
Vậy \(x=-2\)hoặc \(x=3\)
B1:
a) \(3x^2-9x=3x.\left(x-3\right)\)
b) \(x^2-4x+4=\left(x-2\right)^2\)
c) \(x^2+6x+9-y^2=\left(x+3\right)^2-y^2=\left(x+3+y\right).\left(x+3-y\right)\)
B2:
a) \(101^2-1=\left(101+1\right).\left(101-1\right)=102.100=10200\)
b) \(67^2+66.67+33^2=67^2+2.33.67+33^2=\left(67+33\right)^2=100^2=10000\)
B3:
\(x\left(x-3\right)+2\left(x-3\right)=0\)
\(\left(x-3\right).\left(x+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\x+2=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=3\\x=-2\end{cases}}\)
a) \(x^6+1=x^6-\left(-1\right)=\left(x^3\right)^2-\left(-1^3\right)^2=\left(x^3\right)^2-\left(-1\right)\)
\(=\left(x^3-\left(-1\right)\right)\left(x^3+\left(-1\right)\right)=\left(x^3+1\right)\left(x^3-1\right)\)
b) \(x^6-y^6=\left(x^3\right)^2-\left(y^3\right)^2=\left(x^3+y^3\right)\left(x^3-y^3\right)\)
c) \(x^9+1=\left(x^3\right)^3+\left(-1\right)^3\)
\(=\left(x^3+1\right)\left(\left(x^3\right)^2-x^3.1+1^2\right)=\left(x^3+1\right)\left(x^6-x^3+1\right)\)
a) \(x^6+1=\left(x^6-x^4+x^2\right)+\left(x^4-x^2+1\right)\)
\(=x^2\left(x^4-x^2+1\right)+\left(x^4-x^2+1\right)\)
\(=\left(x^2+1\right)\left(x^4-x^2+1\right)\)
b) \(x^6-y^6=\left(x^3\right)^2-\left(y^3\right)^2=\left(x^3-y^3\right)\left(x^3+y^3\right)\)
\(=\left(x-y\right)\left(x^2+xy+y^2\right)\left(x+y\right)\left(x^2-xy+y^2\right)\)
c) \(x^9+1=\left(x^9-x^6+x^3\right)+\left(x^6-x^3+1\right)\)
\(=x^3\left(x^6-x^3+1\right)+\left(x^6-x^3+1\right)\)
\(=\left(x^3+1\right)\left(x^6-x^3+1\right)\)
\(=\left(x+1\right)\left(x^2-x+1\right)\left(x^6-x^3+1\right)\)