Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a\left(b^3-c^3\right)+b\left(c^3-a^3\right)+c\left(a^3-b^3\right)\)
\(=ab^3-ac^3+bc^3-ba^3+ca^3-cb^3\)
\(=\left(abc^2-a^2c^2+a^3c-ab^2c+a^2b^2-a^3b\right)\)
\(+\left(b^2c^2-abc^2+a^2bc-b^3c+ab^3-a^2b^2\right)\)
\(+\left(bc^3-ac^3+a^2c^2-b^2c^2+ab^2c-a^2bc\right)\)
\(=a\left(bc^2-ac^2+a^2c-b^2c+ab^2-a^2b\right)\)
\(+b\left(bc^2-ac^2+a^2c-b^2c+ab^2-a^2b\right)\)
\(+c\left(bc^2-ac^2+a^2c-b^2c+ab^2-a^2b\right)\)
\(=\left(a+b+c\right)\left(bc^2-ac^2+a^2c-b^2c+ab^2-a^2b\right)\)
\(=\left(a+b+c\right)\left(b-a\right)\left(c-a\right)\left(c-b\right)\)
Câu 1:
a) \(2x^2+5x-3=\left(2x^2+6x\right)-\left(x+3\right)\)
\(=2x\left(x+3\right)-\left(x+3\right)=\left(x+3\right)\left(2x-1\right)\)
b) \(x^4+2009x^2+2008x+2009\)
\(=\left(x^4-x\right)+\left(2009x^2+2009x+2009\right)\)
\(=x\left(x-1\right)\left(x^2+x+1\right)+2009\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+2009\right)\)
c) \(\left[\left(x+2\right)\left(x+8\right)\right]\left[\left(x+4\right)\left(x+6\right)\right]=-16\) (đã sửa đề)
\(\Leftrightarrow\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16=0\)
\(\Leftrightarrow\left(x^2+10x+20\right)^2-16+16=0\)
\(\Leftrightarrow\left(x^2+10x+20\right)^2=0\)
\(\Leftrightarrow\left(x+5\right)^2-5=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-5-\sqrt{5}\\x=-5+\sqrt{5}\end{cases}}\)
Câu 1.
a) 2x2 + 5x - 3 = 2x2 + 6x - x - 3 = 2x( x + 3 ) - ( x + 3 ) = ( x + 3 )( 2x - 1 )
b) x4 + 2009x2 + 2008x + 2009
= x4 + 2009x2 + 2009x - x + 2009
= ( x4 - x ) + ( 2009x2 + 2009x + 2009 )
= x( x3 - 1 ) + 2009( x2 + x + 1 )
= x( x - 1 )( x2 + x + 1 ) + 2009( x2 + x + 1 )
= ( x2 + x + 1 )[ x( x - 1 ) + 2009 ]
= ( x2 + x + 1 )( x2 - x + 2009 )
c) ( x + 2 )( x + 4 )( x + 6 )( x + 8 ) = 16 ( xem lại đi chứ không phân tích được :v )
Câu 2.
3x2 + x - 6 - √2 = 0
<=> ( 3x2 - 6 ) + ( x - √2 ) = 0
<=> 3( x2 - 2 ) + ( x - √2 ) = 0
<=> 3( x - √2 )( x + √2 ) + ( x - √2 ) = 0
<=> ( x - √2 )[ 3( x + √2 ) + 1 ] = 0
<=> \(\orbr{\begin{cases}x-\sqrt{2}=0\\3\left(x+\sqrt{2}\right)+1=0\end{cases}}\)
+) x - √2 = 0 => x = √2
+) 3( x + √2 ) + 1 = 0
<=> 3( x + √2 ) = -1
<=> x + √2 = -1/3
<=> x = -1/3 - √2
Vậy S = { √2 ; -1/3 - √2 }
Câu 3.
A = x( x + 1 )( x2 + x - 4 )
= ( x2 + x )( x2 + x - 4 )
Đặt t = x2 + x
A = t( t - 4 ) = t2 - 4t = ( t2 - 4t + 4 ) - 4 = ( t - 2 )2 - 4 ≥ -4 ∀ t
Dấu "=" xảy ra khi t = 2
=> x2 + x = 2
=> x2 + x - 2 = 0
=> x2 - x + 2x - 2 = 0
=> x( x - 1 ) + 2( x - 1 ) = 0
=> ( x - 1 )( x + 2 ) = 0
=> x = 1 hoặc x = -2
=> MinA = -4 <=> x = 1 hoặc x = -2
\(x^4-5x^3+7x^2-6\)
\(=x^4-3x^3+3x^2-2x^3+6x^2-6x-2x^2+6x-6\)
\(=x^2\left(x^2-3x+3\right)-2x\left(x^2-3x+3\right)-2\left(x^2-3x+3\right)\)
\(=\left(x^2-3x+3\right)\left(x^2-2x-2\right)\)
\(\left(x^2-x+6\right)^2+\left(x-3\right)^2\)
\(=x^4+x^2+36-2x^3-12x+12x^2+x^2-6x+9\)
\(=x^4-2x^3+14x^2-18x+45\)
\(=x^4-2x^3+5x^2+9x^2-18x+45\)
\(=x^2\left(x^2-2x+5\right)+9\left(x^2-2x+5\right)=\left(x^2-2x+5\right)\left(x^2+9\right)\)
Bài này hay và khó đấy. Chúc bạn học tốt.
a) \(a^3+b^3+c^3-3abc\)
\(=\left(a^3+3a^2b+3ab^2+b^3\right)+c^3-3a^2b-3ab^2-3abc\)
\(=\left[\left(a+b\right)^3+c^3\right]-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2-ab+b^2-ac-bc+c^2\right)\)
b) \(\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3\)
\(=\left(x-y+y-z\right)\left(x^2-2xy+y^2-xy+xz+y^2-yz+y^2-2yz+z^2\right)+\left(z-x\right)^3\)
\(=\left(x-z\right)\left(x^2-3xy+2y^2+xz-3yz+z^2\right)-\left(x-z\right)^3\)
\(=\left(x-z\right)\left(x^2-3xy+2y^2+xz-3yz+z^2-x^2+2xz-z^2\right)\)
\(=\left(x-z\right)\left(-3xy+2y^2+3xz-3yz\right)\)
\(\left(x+5\right)^2-3\left(x+5\right)\)
\(=\left(x+5\right)\left(x+5-3\right)\)
\(=\left(x+5\right)\left(x+2\right)\)
\(2x\left(x-3\right)-\left(x-3\right)^2\)
\(=\left(x-3\right)\left(2x-x+3\right)\)
\(=\left(x-3\right)\left(x+3\right)\)
Cần cù bù thông minh.
a
\(\left(a^2+b^2\right)\left(c^2+d^2\right)=a^2c^2+a^2d^2+b^2c^2+b^2d^2\)
\(=\left(a^2c^2+2abcd+b^2d^2\right)+\left(a^2d^2-2abcd+b^2c^2\right)\)
\(=\left(ac+bd\right)^2+\left(ad-bc\right)^2\)
b
\(\left(a+b+c\right)^2+a^2+b^2+c^2\)
\(=a^2+b^2+c^2+2\left(ab+bc+ca\right)+a^2+b^2+c^2\)
\(=\left(a^2+2ab+b^2\right)+\left(b^2+2bc+c^2\right)+\left(c^2+2ac+a^2\right)\)
\(=\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2\)
\(a\left(b^2-c^2\right)-b\left(c^2-a^2\right)+c\left(a^2-b^2\right)\)
\(=a\left(b^2-c^2\right)-b\left(c^2-a^2\right)-c\left[\left(b^2-c^2\right)+\left(c^2-a^2\right)\right]\)
\(=a\left(b^2-c^2\right)-b\left(c^2-a^2\right)-c\left(b^2-c^2\right)-c\left(c^2-a^2\right)\)
\(=\left(b^2-c^2\right)\left(a-c\right)-\left(c^2-a^2\right)\left(b +c\right)\)
\(=\left(b+c\right)\left(b-c\right)\left(a-c\right)-\left(c-a\right)\left(a+c\right)\left(b+c\right)\)
\(=\left(a-c\right)\left(b+c\right)\left(b-c+a+c\right)\)
\(=\left(a+b\right)\left(b+c\right)\left(a-c\right)\)
Bn tham khảo lời giải ở câu này nha
https://olm.vn/hoi-dap/question/705592.html