K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 12 2019

Để \(\overline{x74y}⋮\)6 thì \(\overline{x74y}\)chia hết cho cả 2 và 3.

Để \(\overline{x74y}⋮\)5 nên y\(\in\){0;5}

Mà \(\overline{x74y}⋮\)2 nên y=0

Ta có : \(\overline{x74y}=\overline{x740}⋮3\Rightarrow\)x+7+4+0\(⋮\)3

                                                     x+11\(⋮\)3

\(\Rightarrow\)x\(\in\){1;4;7}

Vậy x\(\in\){1;4;7} và y=0.

7 tháng 12 2019

\(\overline{x74y}\)chia hết cho 5 \(\Rightarrow y\in\left\{0;5\right\}\)

mà \(\overline{x74y}\)chia hết cho 6 \(\Rightarrow\overline{x74y}\)phải là chẵn \(\Rightarrow y=0\)

Tổng các chữ số là : \(x+7+4+0=11+x\)

Để \(\overline{x740}⋮6\)thì \(11+x\)phải chia hết cho 6 

mà \(0< x\le9\)\(\Rightarrow x\in\left\{1;7\right\}\)

Vậy \(x\in\left\{1;7\right\}\)và \(y=0\)

17 tháng 8 2018

Bài 1:

- Gọi 6 số từ nhiên liên tiếp là a ; a+ 1; a+2 ; a+3 ; a+4 ; a+5 (a : tự nhiên)

Tổng của chúng là:

a+ (a+1) + (a+2) +(a+3)+(a+4)+(a+5)

= 6a+15

Ta có: 6a chia hết cho 6 với mọi a.

15 không chia hết cho 6.

=> Tổng của chung không chia hết cho 6.

13 tháng 8 2018

Làm từng phần thôi dài quá

Bài 1 :

Gọi số tự nhiên đầu tiên tiên là a

=> a + a + 1 + a + 2 + a + 3 + a + 4 + a + 5

= 6a + 15

mà 6a chia hết cho 6; 15 ko chia hết cho 6 => tổng đó KO chia hết

13 tháng 8 2018

Bài 2 :

Ta thấy : 3^2018 có tận cùng là 1 số lẻ

11^2017 cũng có tận cùng là một số lẻ

=> 3^2018 - 11^2017 là một số chẵn => 3^2018 - 11^2017 chia hết cho 2

26 tháng 12 2018

2n + 5 ⋮ n + 1

2n + 2 + 3 ⋮ n + 1

2( n + 1 ) + 3 ⋮ n + 1

Vì 2( n + 1 ) ⋮ n +1 

=> 3 ⋮ n + 1

=> n + 1 thuộc Ư(3) = { 1; 3; -1; -3 }

=> n thuộc { 0; 2; -2; -4 }

Mà n là số tự nhiên

=> n thuộc { 0; 2 }

\(n\in\left\{0;2\right\}\)

#Nhi#

16 tháng 8 2018

bài 1 ko

bài 2

ta có \(\hept{\begin{cases}3^{2018}=3^{2016}.3^2=\left(3^4\right)^{504}.9=81^{504}.9=\cdot\cdot\cdot1.9=\cdot\cdot\cdot9\\11^{2017}=\cdot\cdot\cdot1\end{cases}}\)

\(\Rightarrow3^{2018}-11^{2017}=\cdot\cdot\cdot9-\cdot\cdot\cdot1=\cdot\cdot\cdot8⋮2\left(ĐPCM\right)\)

bài 3

a) 

\(n+4⋮n\Rightarrow4⋮n\Rightarrow n\inƯ\left(\text{4}\right)\)

\(\Rightarrow n\in\left\{1;2;4;-1;-2;-4\right\}\)

b)

\(3n+7⋮n\Rightarrow7⋮n\Rightarrow n\inƯ\left(7\right)\)

\(\Rightarrow n\in\left\{1;7;-1;-7\right\}\)

Để 1x5y chia hết cho 2 thì y = 0 ,  2 , 4 , 6 , 8

Để 1x5y chia hết cho 5 thì y = 0 , 5 

=> y = 0 

Để 1x5y chia hết cho 3 thì 1 + x + 5 + 0 = 6+ x chia hết cho 3

=> x = 0 , 3 ,6 ,9 

Để 1x5y chia hết cho 6 thì 1 + x + 5 + 0 = 6+x chia hết cho 6 

=> x = 0 ; 6 

Để 1x5y chia hết cho 9 thì 1 + x + 5 + 0 = 6 + x chia hết cho 9 

=> x = 3 

=> Ko tồn tại x 

12 tháng 1 2016

Bài này dễ lắm . Cậu chỉ cần dựa vào dấu hiệu chia hết cho 3 , 9 Rồi sau đó giải như bài tìm 2 số khi biết tổng và hiệu.

12 tháng 1 2016

a) 7a5b1 chia hết cho 3=>7+a+5+b+1 chia hết cho 3

                                =>13+a+b chia hết cho 3(0<a,b<10 và 0<a+b<18)

                                  =>a+b thuộc{2;5;8;11;14;17}

Vì hiệu của a và b là 1 số chẵn(4) nên a và b hoặc cùng là số chẵn,hoặc cùng là số lẻ.Do đó,tổng của a và b là 1 số chẵn.Mặt khác,a+b>2 vì a+b=4.

=>a+b thuộc{8;14}

Vs a+b=8 và a-b=4 thì a=6 và b=2.

Vs a+b=14 và a-b=4 thì a=9 và b=5.

Vậy a=6 và b=2; a=9 và b=5

 

12 tháng 8 2018

Bài 1:

Tổng của 6 STN liên tiếp coi là:

\(a+\left(a+1\right)+\left(a+2\right)+\left(a+3\right)+\left(a+4\right)+\left(a+5\right)\)

\(=6a+15⋮̸6\)

KL: Tổng của 6 STN liên tiếp không chia hết cho 6.

Bài 2:

\(3\equiv1\left(mod2\right)\Rightarrow3^{2018}\equiv1\left(mod2\right)\)( 1 )

\(11\equiv1\left(mod\right)2\Rightarrow11^{2017}\equiv1\left(mod2\right)\)( 2 )

Từ ( 1 ) và ( 2 ) => \(3^{2018}-11^{2017}\equiv1-1=0\left(mod2\right).\)

KL; đpcm.

Bài 3 :

a) \(n+4⋮n\Rightarrow4⋮n\Leftrightarrow n\inƯ\left(4\right)=\left\{-4;-2;-1;1;2;4\right\}.\)

KL: ...

b) \(3n+7⋮n\Rightarrow7⋮n\Leftrightarrow n\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}.\)

KL: ...