Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để \(\overline{x74y}⋮\)6 thì \(\overline{x74y}\)chia hết cho cả 2 và 3.
Để \(\overline{x74y}⋮\)5 nên y\(\in\){0;5}
Mà \(\overline{x74y}⋮\)2 nên y=0
Ta có : \(\overline{x74y}=\overline{x740}⋮3\Rightarrow\)x+7+4+0\(⋮\)3
x+11\(⋮\)3
\(\Rightarrow\)x\(\in\){1;4;7}
Vậy x\(\in\){1;4;7} và y=0.
\(\overline{x74y}\)chia hết cho 5 \(\Rightarrow y\in\left\{0;5\right\}\)
mà \(\overline{x74y}\)chia hết cho 6 \(\Rightarrow\overline{x74y}\)phải là chẵn \(\Rightarrow y=0\)
Tổng các chữ số là : \(x+7+4+0=11+x\)
Để \(\overline{x740}⋮6\)thì \(11+x\)phải chia hết cho 6
mà \(0< x\le9\)\(\Rightarrow x\in\left\{1;7\right\}\)
Vậy \(x\in\left\{1;7\right\}\)và \(y=0\)
Làm từng phần thôi dài quá
Bài 1 :
Gọi số tự nhiên đầu tiên tiên là a
=> a + a + 1 + a + 2 + a + 3 + a + 4 + a + 5
= 6a + 15
mà 6a chia hết cho 6; 15 ko chia hết cho 6 => tổng đó KO chia hết
Bài 2 :
Ta thấy : 3^2018 có tận cùng là 1 số lẻ
11^2017 cũng có tận cùng là một số lẻ
=> 3^2018 - 11^2017 là một số chẵn => 3^2018 - 11^2017 chia hết cho 2
2n + 5 ⋮ n + 1
2n + 2 + 3 ⋮ n + 1
2( n + 1 ) + 3 ⋮ n + 1
Vì 2( n + 1 ) ⋮ n +1
=> 3 ⋮ n + 1
=> n + 1 thuộc Ư(3) = { 1; 3; -1; -3 }
=> n thuộc { 0; 2; -2; -4 }
Mà n là số tự nhiên
=> n thuộc { 0; 2 }
bài 1 ko
bài 2
ta có \(\hept{\begin{cases}3^{2018}=3^{2016}.3^2=\left(3^4\right)^{504}.9=81^{504}.9=\cdot\cdot\cdot1.9=\cdot\cdot\cdot9\\11^{2017}=\cdot\cdot\cdot1\end{cases}}\)
\(\Rightarrow3^{2018}-11^{2017}=\cdot\cdot\cdot9-\cdot\cdot\cdot1=\cdot\cdot\cdot8⋮2\left(ĐPCM\right)\)
bài 3
a)
\(n+4⋮n\Rightarrow4⋮n\Rightarrow n\inƯ\left(\text{4}\right)\)
\(\Rightarrow n\in\left\{1;2;4;-1;-2;-4\right\}\)
b)
\(3n+7⋮n\Rightarrow7⋮n\Rightarrow n\inƯ\left(7\right)\)
\(\Rightarrow n\in\left\{1;7;-1;-7\right\}\)
Để 1x5y chia hết cho 2 thì y = 0 , 2 , 4 , 6 , 8
Để 1x5y chia hết cho 5 thì y = 0 , 5
=> y = 0
Để 1x5y chia hết cho 3 thì 1 + x + 5 + 0 = 6+ x chia hết cho 3
=> x = 0 , 3 ,6 ,9
Để 1x5y chia hết cho 6 thì 1 + x + 5 + 0 = 6+x chia hết cho 6
=> x = 0 ; 6
Để 1x5y chia hết cho 9 thì 1 + x + 5 + 0 = 6 + x chia hết cho 9
=> x = 3
=> Ko tồn tại x
Bài này dễ lắm . Cậu chỉ cần dựa vào dấu hiệu chia hết cho 3 , 9 Rồi sau đó giải như bài tìm 2 số khi biết tổng và hiệu.
a) 7a5b1 chia hết cho 3=>7+a+5+b+1 chia hết cho 3
=>13+a+b chia hết cho 3(0<a,b<10 và 0<a+b<18)
=>a+b thuộc{2;5;8;11;14;17}
Vì hiệu của a và b là 1 số chẵn(4) nên a và b hoặc cùng là số chẵn,hoặc cùng là số lẻ.Do đó,tổng của a và b là 1 số chẵn.Mặt khác,a+b>2 vì a+b=4.
=>a+b thuộc{8;14}
Vs a+b=8 và a-b=4 thì a=6 và b=2.
Vs a+b=14 và a-b=4 thì a=9 và b=5.
Vậy a=6 và b=2; a=9 và b=5
Bài 1:
Tổng của 6 STN liên tiếp coi là:
\(a+\left(a+1\right)+\left(a+2\right)+\left(a+3\right)+\left(a+4\right)+\left(a+5\right)\)
\(=6a+15⋮̸6\)
KL: Tổng của 6 STN liên tiếp không chia hết cho 6.
Bài 2:
\(3\equiv1\left(mod2\right)\Rightarrow3^{2018}\equiv1\left(mod2\right)\)( 1 )
\(11\equiv1\left(mod\right)2\Rightarrow11^{2017}\equiv1\left(mod2\right)\)( 2 )
Từ ( 1 ) và ( 2 ) => \(3^{2018}-11^{2017}\equiv1-1=0\left(mod2\right).\)
KL; đpcm.
Bài 3 :
a) \(n+4⋮n\Rightarrow4⋮n\Leftrightarrow n\inƯ\left(4\right)=\left\{-4;-2;-1;1;2;4\right\}.\)
KL: ...
b) \(3n+7⋮n\Rightarrow7⋮n\Leftrightarrow n\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}.\)
KL: ...