K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Cái này bạn nhận xét thôi: số cách xếp sao cho ko có bạn nào cùng lớp bằng số cách xếp sao cho ba bạn M2,N2,P2(Với M2,N2,P2 là 3 bạn của lớp A1) ko đứng cạnh nhau trừ đi số cách xếp sao cho ba bạn M2,N2,P2 ko đứng cạnh nhau và hai bạn M1,N1(M1,N1 là hai bạn của lớp A1) đứng cạnh nhau

17 tháng 12 2017


18 tháng 5 2017

Đáp án D

Một bạn học sinh làm 2 môn sẽ có 36 cách chọn đề, do đó ReQ2vH7FXT7d.png 

Hai bạn Hùng và Vương có chung một mã đề thi thì cùng mã toán hoặc cùng mã tiếng anh do đó HpFTkg1fMZ1c.png 

Vậy xác suất cần tính là JD8Rab4NmKcD.png

13 tháng 10 2018

Đáp án A

Kí hiệu học sinh các lớp 12A, 12B,12C lần lượt là A,B,C

Ta sẽ xếp 5 học sinh của lớp 12C trước, khi đó xét các trường hợp sau

Trường hợp1:

CxCxCxCxCx với x thể hiện là ghế trống.

Khi đó, số cách xếp là 5!5! cách.

Trường hợp 2: xCxCxCxCxC giống với TH1

có 5!5! cách xếp

Trường hợp 3: CxxCxCxCxC với xx là hai ghế trống liền nhau

Chọn 1 học sinh lớp 12A và 1 học sinh lớp 12B vào hai ghế trống đó

⇒  2.3.2! cách xếp

Ba ghế trống còn lại ta sẽ xếp 3hoc sinh còn lại của 2 lớp 12A-12B

⇒  3! cách xếp.

Do đó, TH3 có 2.3.2!.3!.5! cách xếp

Ba TH4. CxCxxCxCxC

TH5. CxCxCxxCxC

TH6. CxCxCxCxCxx tương tự

Vậy có tất cả 2.5!5!+4.2.3.2!.3!.5!=63360 cách xếp cho các học sinh

Suy ra xác suất cần tính là

P = 63360 10 ! = 11 630

29 tháng 4 2017

Đáp án D

Coi 5 bạn của cả 12A và B vào một lớp 12X nào đó

Do số lượng ở đề nên ta có hai trường hợp

TH1. Các bạn 12C và 12X xen kẽ nhau.

5 ! . 5 ! . 2 ! = 28800  cách

TH2. Có hai bạn lớp 12A và 12B dính với nhau

Ta có như 12X chỉ có 4 bạn. rồi lại làm xen kẽ

Chọn 2 bạn dính nhau và hoán vị 2 bạn đó có 12 cách, 5 bạn 12C tạo ra 4 khe để 4 bạn của lớp 12X đứng vào nên có tất cả là

12.5!.4!=34560

11 tháng 8 2018

Đáp án A

Kí hiệu học sinh các lớp 12A, 12B, 12C lần lượt là A, B, C

Ta sẽ xếp 5 học sinh của lớp 12C trước, khi đó xét các trường hợp sau:

TH1: CxCxCxCxCx với x thể hiện là ghế trống. Khi đó, số cách xếp là vaKyAgiT4fW5.png cách.

TH2: xCxCxCxCxC giống với TH1=> có nqALJgsUt5je.pngcách xếp.

TH3: CxxCxCxCxC với xx là hai ghế trống liền nhau.

Chọn 1 học sinh lớp 12A và 1 học sinh lớp 12B vào hai ghế trống đó => FOzv5wXVJWUi.png cách xếp.

Ba ghế trống còn lại ta sẽ xếp 3 học sinh còn lại của 2 lớp 12A-12B => pAH9u5tcEGSq.png cách xếp.

Do đó, TH3 có kNjTHA2P59Mg.png cách xếp.

Ba TH4. CxCxxCxCxC.

TH5. CxCxCxxCxC.

TH6. CxCxCxCxCxx tương tự TH3.

Vậy có tất cả pjTQ1y4d4ZMU.png cách xếp cho các học sinh.

Suy ra xác suất cần tính là

gRkbfkT04FgQ.png

20 tháng 9 2018

Đáp án D

Không gian mẫu là: Ω   =   6 4  

TH1: Môn Toán trùng mã đề thi môn Tiếng Anh không trùng có:

Bạn Hùng chọn 1 mã toán có 6 cách và 6 cách chọn mã môn Tiếng Anh khi đó Vương có 1 cách là phải giống Hùng mã Toán và 5 cách chọn mã Tiếng Anh có 6.1.6.5 = 180 cách.

TH2: Môn Tiếng Anh trùng mã đề thi môn Toán không trùng có: 6.1.6.5 = 180 cách.

Vậy  P   =   180 + 180 6 4   =   5 18

3 tháng 11 2018

9 tháng 1 2017

Chọn A

Ta đánh số các vị trí từ 1 đến 8.

Số phần tử không gian mẫu là 

Gọi A là biến cố: “xếp được tám bạn thành hàng dọc thỏa mãn các điều kiện: đầu hàng và cuối hàng đều là nam và giữa hai bạn nam gần nhau có ít nhất một bạn nữ, đồng thời bạn Quân và bạn Lan không đứng cạnh nhau”.

TH1: Quân đứng vị trí 1 hoặc 8 => có 2 cách

Chọn một trong 3 bạn nam xếp vào vị trí 8 hoặc 1 còn lại => có 3 cách.

Xếp 2 bạn nam còn lại vào 2 trong 4 vị trí 3,4,5,6 mà 2 nam không đứng cạnh nhau

=> có 6 cách

Xếp vị trí bạn Lan có 3 cách.

Xếp 3 bạn nữ vào 3 vị trí còn lại có 3! cách.

=> TH này có: 2.3.6.3.3! = 648 cách

TH2: Chọn 2 bạn nam ( khác Quân) đứng vào 2 vị trí 1 hoặc 8 có A 3 2  cách.

Xếp Quân và  bạn nam còn lại vào 2 trong 4 vị trí 3,4,5,6 mà 2 nam không đứng cạnh nhau => có 6 cách

Xếp vị trí bạn Lan có 2 cách.

Xếp 3 bạn nữ vào 3 vị trí còn lại có 3! cách.

=> TH này có: 

Vậy xác suất của biến cố A là 

NV
22 tháng 11 2021

TH1: 5 học sinh lớp C đứng cách nhau đúng 1 vị trí 

- Chọn vị trí cho nhóm 5 học sinh lớp C: 2 cách (đứng đầu hàng hoặc ko đứng đầu hàng)

- Hoán vị 5 học sinh lớp C: 5! cách

- Hoán vị 5 học sinh lớp A và B: 5! cách

\(\Rightarrow2.5!.5!\) cách cho TH1

TH2: 5 học sinh lớp C trong đó có 2 bạn đứng cách nhau 2 vị trí

Chọn vị trí cho 2 người kề nhau: 4 cách

Hoán vị 5 học sinh lớp C: 5! cách

Chọn 1 học sinh lớp A, 1 học sinh lớp B xếp vào 2 vị trí liền kề nói trên: \(C_2^1.C_3^1.2!\) cách

Xếp vị trí cho 3 người còn lại: 3! cách

\(\Rightarrow4.5!.C_2^1.C_3^1.2!.3!\) cách cho TH2

Tổng cộng: \(TH1+TH2=...\)