K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 5 2022

\(\text{Đ}K:x^2+2x+3\ge0\\ x^2+6x+1=\left(2x+1\right)\cdot\sqrt{x^2+2x+3}\\ \Leftrightarrow x^2+2x+3+4x+2=\left(2x+1\right)\cdot\sqrt{x^2+2x+3+4}\)

\(\text{ Đặt }\)\(m=\sqrt{x^2+2x+3};n=2x+1\) \(\text{ phương trình trở thành :}\)

\(m^2+2n=mn+4\\ \Leftrightarrow m^2-4-mn+2n=0\\ \Leftrightarrow\left(m-2\right)\left(m+2\right)-n\left(m-2\right)=0\\ \Leftrightarrow\left(m-2\right)\left(m-n-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}m=2\\m-n=-2\end{matrix}\right.\)

`\text{ Với}` \(m=2\\ \Leftrightarrow\sqrt{x^2+2x+3}=2\Leftrightarrow x^2+2x-1=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\sqrt{2}-1\left(N\right)\\x=-\sqrt{2}-1\left(N\right)\end{matrix}\right.\)

`\text{Với}`\(m-n=-2\Leftrightarrow\sqrt{x^2+2x+3}-\left(2x+1\right)=-2\\ \Leftrightarrow\sqrt{x^2+2x+3}=-2+2x+1=2x-1\\ \Leftrightarrow x^2+2x+3=4x^2-4x+1\\ \Leftrightarrow3x^2-6x-2=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3+\sqrt{15}}{3}\left(N\right)\\x=\dfrac{3-\sqrt{15}}{3}\left(L\right)\end{matrix}\right.\)

20 tháng 5 2022

weo hay thế:33

7 tháng 4 2016

khó quá

4 tháng 8 2019

ĐK: \(-x^2+x+1\ge0\) (xấu quá em hok dám giải đâu:v)

PT \(\Leftrightarrow4x^2-4x+3\left(1-\sqrt{x-x^2+1}\right)=0\)

\(\Leftrightarrow4x\left(x-1\right)+3.\frac{x\left(x-1\right)}{1+\sqrt{x-x^2+1}}=0\)

\(\Leftrightarrow x\left(x-1\right)\left(4+\frac{3}{1+\sqrt{x-x^2+1}}\right)=0\)

Cái ngoặc to hiển nhiên vô nghiệm.

Do đó x = 0 (TM) hoặc x = 1 (TM)

Vậy....

P.s: đúng ko ta mà sao em thấy đơn giản quá, thường liên hợp kiểu này cái ngoặc to xấu xí lắm mà sao lần này nó dễ..

5 tháng 8 2019

bạn làm đúng rồi nha

30 tháng 6 2017

a)Đk:\(x\ge\frac{1}{2}\)

\(pt\Leftrightarrow4x^2-12x+4+4\sqrt{2x-1}=0\)

\(\Leftrightarrow\left(2x-1\right)^2-4\left(2x-1\right)-1+4\sqrt{2x-1}=0\)

Đặt \(t=\sqrt{2x-1}>0\Rightarrow\hept{\begin{cases}t^2=2x-1\\t^4=\left(2x-1\right)^2\end{cases}}\)

\(t^4-4t^2+4t-1=0\)

\(\Leftrightarrow\left(t-1\right)^2\left(t^2+2t-1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}t-1=0\\t^2+2t-1=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}t=1\\t=\sqrt{2}-1\end{cases}\left(t>0\right)}\)

\(\Rightarrow\orbr{\begin{cases}x=1\\x=2-\sqrt{2}\end{cases}}\) là nghiệm thỏa pt

17 tháng 11 2019

Đặt 2x+y=a

pt <=> (a-1)^2+a^2+2a+1=0

<=> (a-1)^2+(a+1)^2=0

Có (a-1)^2 và (a+1)^2>=0 với mọi a

Mà tổng =0

=> ''='' xảy ra <=> a=1 và a=-1

=> vô lí do a ko thể = 2 giá trị

=> pt  vô nghiệm.

17 tháng 11 2019

Bạn ơi, 2x+y khác với x+2y mà bạn

21 tháng 2 2019

Câu 1: ĐK: x khác -1/2, y khác -2

Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=t\) Từ phương trình thứ nhất ta có:

\(t+\frac{1}{t}=2\Leftrightarrow t^2-2t+1=0\Leftrightarrow t=1\)

=> \(\sqrt[3]{\frac{2x+1}{y+2}}=1\Leftrightarrow2x+1=y+2\Leftrightarrow2x-y=1\)

Vậy nên ta có hệ phương trình cơ bản: \(\hept{\begin{cases}2x-y=1\\4x+3y=7\end{cases}}\)Em làm tiếp nhé>

21 tháng 2 2019

\(1,ĐKXĐ:\hept{\begin{cases}y\ne-2\\x\ne-\frac{1}{2}\end{cases}}\)

Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=a\left(a\ne0\right)\)

\(Pt\left(1\right)\Leftrightarrow a+\frac{1}{a}=2\)

             \(\Leftrightarrow a^2+1=2a\)

             \(\Leftrightarrow\left(a-1\right)^2=0\)

            \(\Leftrightarrow a=1\)

           \(\Leftrightarrow\sqrt[3]{\frac{2x+1}{y+2}}=1\)

9 tháng 2 2016

\(\left(2X-1\right)^2=\sqrt{x^2-x-2}+1\)

\(\Leftrightarrow4x^2+4x+1=x^2-x-2+2\sqrt{x^2-x-2}+1\)

\(\Leftrightarrow4x+4x+1-x^2+x+2-1=2\sqrt{x^2-x-2}+1\)

\(\Leftrightarrow3x^2+5x-2=2\sqrt{x^2-x-2}\)

\(\Leftrightarrow\int^{3x^2+5x-2=0}_{4\left(x^2-x-2\right)=3x^2+5x-2}\)..............

9 tháng 2 2016

Đặt \(y=\sqrt{x^2-x-2}\left(y\ge0\right)\)rồi tính nha

S=\(\frac{1-\sqrt{13}}{2};\frac{1+\sqrt{13}}{2};3;-2\)

năm mới zui zẻ