Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét: \(\sqrt{1+n^2+\frac{n^2}{\left(n+1\right)^2}}=\sqrt{\frac{\left(n+1\right)^2+n^2\left(n+1\right)^2+n^2}{\left(n+1\right)^2}}\) (với \(n\inℕ\))
\(=\sqrt{\frac{n^2+2n+1+n^4+2n^3+n^2+n^2}{\left(n+1\right)^2}}\)
\(=\sqrt{\frac{n^4+n^2+1+2n^3+2n^2+2n}{\left(n+1\right)^2}}\)
\(=\sqrt{\frac{\left(n^2+n+1\right)^2}{\left(n+1\right)^2}}=\frac{n^2+n+1}{n+1}=n+\frac{1}{n+1}\)
Áp dụng vào ta tính được: \(\sqrt{1+2015^2+\frac{2015^2}{2016^2}}+\frac{2015}{2016}=2015+\frac{1}{2016}+\frac{2015}{2016}\)
\(=2015+1=2016\)
Khi đó: \(\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}=2016\)
\(\Leftrightarrow\left|x-1\right|+\left|x-2\right|=2016\)
Đến đây xét tiếp các TH nhé, ez rồi:))
chẳng biết đúng ko,mới lớp 5
\(\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}=\sqrt{1+2015^2+\frac{2015^2}{2016^2}}+\frac{2015}{2016}\)
\(\sqrt{x^2}-\sqrt{2x}+\sqrt{1}+\sqrt{x^2}-\sqrt{4x}+\sqrt{4}=\sqrt{1}+\sqrt{2015^2}+\sqrt{\frac{2015^2}{2016^2}}+\frac{2015}{2016}\)
\(\sqrt{x^2}-\sqrt{6x}+3=1+2015+\frac{2015}{2016}+\frac{2015}{2016}\)
\(x-\sqrt{6x}=1+\frac{2015}{1+2016+2016}-3\)
\(x-\sqrt{6x}=2-\frac{2015}{4033}\)
\(x-\sqrt{6x}=\frac{6051}{4033}\)
\(x^2-4x+6=0\)
\(\Leftrightarrow x^2-4x+4+2=0\)
\(\Leftrightarrow\left(x-2\right)^2+2=0\)
\(\Leftrightarrow\left(x-2\right)^2=-2\)( vô lí )
=> vô nghiệm
Vậy tập nghiệm của pt là \(S=\varnothing\)
Bài làm
\(x^2-4x+6=0\)
\(\Leftrightarrow x^2-4x+4+2=0\)
\(\Leftrightarrow\left(x-2\right)^2+2=0\)
\(\Leftrightarrow\left(x-2\right)^2=-2\)\(\text{( vô lí )}\)
\(\Rightarrow\)\(\text{Vô nghiệm}\)
\(\text{Vậy tập nghiệm của phương trình là }\)\(S=\varnothing\)
\(\text{# Chúc bạn học tốt #}\)
x3 - 4x - x2 - 6 = 0
<=> x2 - 3x2 + 2x2 - 6x + 2x - 6 = 0
<=> x2(x - 3) + 2x(x - 3) + 2(x - 3) = 0
<=> (x2 + 2x + 2)(x - 3) = 0
<=> x - 3 = 0 (do x2 + 2x + 2 = (x2 + 2x + 1) + 1 = (x + 1)2 + 1 \(\ne\)0)
<=> x = 3
Vậy S = {3}
\(x^3-4x-x^2-6=0\)
\(\Leftrightarrow x^3-x^2-4x-6=0\)
\(\Leftrightarrow\left(x^3-3x^2\right)+\left(2x^2-6x\right)+\left(2x-6\right)=0\)
\(\Leftrightarrow x^2\left(x-3\right)+2x\left(x-3\right)+2\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x^2+2x+2\right)=0\)(1)
Ta có: \(x^2+2x+2=x^2+2x+1+1=\left(x+1\right)^2+1>0\)
Từ (1) \(\Rightarrow x-3=0\)\(\Leftrightarrow x=3\)
Vậy tập nghiệm của phương trình là \(S=\left\{3\right\}\)
Từ biểu thức, ta suy ra:
(x+2)(3-4x)=(x+2)2
<=> (x+2)(3-4x)-(x+2)2=0
<=>(x+2)(3-4x-x-2)=0
<=>(x+2)(1-5x)=0
<=>x+2=0 hoặc 1-5x=0
<=>x=-2 hoặc x=1/5
Vậy phương trình có tập nghiệm S={-2;1/5}
(x + 2)(3 - 4x) = x2 + 4x + 4
<=> 3x - 4x2 + 6 - 8x = x2 + 4x + 4
<=> -5x - 4x2 + 6 = x2 + 4x + 4
<=> 5x + 4x2 - 6 + x2 + 4x + 4 = 0
<=> 9x + 5x2 - 2 = 0
<=> 5x2 + 10x - x - 2 = 0
<=> 5x(x + 2) - (x + 2) = 0
<=> (x + 2)(5x - 1) = 0
<=> x + 2 = 0 hoặc 5x - 1 = 0
<=> x = -2 hoặc x = 1/5
đặt \(\sqrt{3x^2+x+2}=a\)
\(a^2+4x^2+x^2-4x+4\)=4ax <=> \(\left(a^2-4ax+4x^2\right)+\left(x^2-4x+4\right)\)=0 <=>(a-2x)2+(x-2)2=0
=>a=2x và x=2 đồng thởi xảy ra (1)
với x=2 =>a=\(\sqrt{3.4+2+2}\)=4=2x
vậy x=2 thỏa mãn điều kiện (1) =>pt co nghiệm duy nhất x=2
Giải :
\(\text{Đ/k : }x^2-4x-6\ge0\)
Bình phương 2 vế phương trình, ta được :
\(x^2-4x-6=15\)
\(\Leftrightarrow x^2-4x-21=0\)
\(\Leftrightarrow\left(x-7\right)\left(x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-7=0\\x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=7\\x=-3\end{cases}}}\)
Thế x tìm được vào Đ/k ta thấy cả \(x=7\) và \(x=-3\) đều thỏa mãn.
Vậy \(S=\left\{7;-3\right\}\).