K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 9 2020

Ta có : \(N=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{1000.1001}\)

\(=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{1001-1000}{1000.1001}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{1000}-\frac{1}{1001}\)

\(=1-\frac{1}{1001}=\frac{1000}{1001}\)

Ta thấy : \(1001< 2020\Rightarrow\frac{1}{1001}>\frac{1}{2020}\)

\(\Rightarrow-\frac{1}{1001}< -\frac{1}{2020}\)

\(\Rightarrow1-\frac{1}{1001}< 1-\frac{1}{2020}\Rightarrow\frac{1000}{1001}< \frac{2019}{2020}\)

Hay : \(N< M\)

16 tháng 9 2020

Lộn đề M = \(\frac{20192019}{20202020}\)NHA

13 tháng 2 2016

2y= 2/ 1.2.3 + 2/2.3.4 + 2/3.4.5 +.... +2/998.999.1000

2y=1/1.2 - 1/2.3 +1/2.3 - 1/3.4 + 1/3.4 -1/4.5 +....+ 1/998.999 - 1/ 999.1000

2y=1/2 - 1/ 999.1000

2y = 499500-1 /  999.1000

2y=499499 / 999.1000

y=499499 / 1998000

Ủng hộ mk nha

13 tháng 2 2016

bai toan nay khó quá

5 tháng 3 2020

\(4S=1+\frac{2}{4}+\frac{3}{4^2}+...+\frac{2019}{4^{2018}}\)

=> \(3S=1+\frac{2}{4}+\frac{3}{4^2}+...+\frac{2019}{2^{2018}}-\frac{1}{4}-\frac{2}{4^2}-\frac{3}{4^3}-...-\frac{2019}{4^{2019}}\)

=>3S=\(1+\frac{1}{4}+\frac{1}{4^2}+..+\frac{1}{2^{2018}}-\frac{2019}{4^{2019}}\)

còn lại tự giải nhé  

5 tháng 3 2020

Mình cảm ơn bạn.

8 tháng 2 2021

1) Ta có: \(\frac{2019}{2020}+\frac{2020}{2021}=\frac{2019}{2020}+\frac{4040}{4042}>\frac{4040}{4042}>\frac{4039}{4041}\)

Mà \(\frac{2019+2020}{2020+2021}=\frac{4039}{4041}\)

\(\Rightarrow\frac{2019}{2020}+\frac{2020}{2021}>\frac{2019+2020}{2020+2021}\)

2) BĐT cần CM tương đương:

\(\frac{a^2+b^2}{ab}\ge2\Leftrightarrow a^2+b^2\ge2ab\Leftrightarrow\left(a-b\right)^2\ge0\) (Luôn đúng)

Dấu "=" xảy ra khi: a = b

Hoặc có thể sử dụng BĐT Cauchy nếu bạn học cao hơn

8 tháng 2 2021

Tìm x e Z biết: 2x+1 e Ư (x+5) và x e N

giải giúp mình nhé!

mình cần gấpppppppppppppp

29 tháng 8 2020

Bài làm:

Xét: \(\frac{1}{5^2}>\frac{1}{5.6}\) ; \(\frac{1}{6^2}>\frac{1}{6.7}\) ; ... ; \(\frac{1}{100^2}>\frac{1}{100.101}\)

=> \(A>\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{100.101}\)

\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{101}\)

\(=\frac{1}{5}-\frac{1}{101}=\frac{96}{505}>\frac{1}{6}\) (1)

Lại có: \(\frac{1}{5^2}< \frac{1}{4.5}\) ; \(\frac{1}{6^2}< \frac{1}{5.6}\) ; ... ; \(\frac{1}{100^2}< \frac{1}{99.100}\)

=> \(A< \frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)

\(=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)

\(=\frac{1}{4}-\frac{1}{100}< \frac{1}{4}\) (2)

Từ (1) và (2) => \(\frac{1}{6}< A< \frac{1}{4}\)

a)\(A=\frac{31}{23}-\left(\frac{7}{32}+\frac{8}{2}\right)vaB=\left(\frac{1}{3}+\frac{12}{67}+\frac{13}{41}\right)-\left(\frac{79}{67}-\frac{28}{41}\right)\)

+)Ta có:\(A=\frac{31}{23}-\left(\frac{7}{32}+\frac{8}{2}\right)\)

\(\Leftrightarrow A=\frac{31}{23}-\left(\frac{7}{32}+\frac{128}{32}\right)\)

\(\Leftrightarrow A=\frac{31}{23}-\frac{135}{32}\)

\(\Leftrightarrow A=\frac{992}{736}-\frac{3105}{736}\)

\(\Leftrightarrow A=\frac{-2113}{736}\left(1\right)\)

+)Ta lại có:\(B=\left(\frac{1}{3}+\frac{12}{67}+\frac{13}{41}\right)-\left(\frac{79}{67}-\frac{28}{41}\right)\)

\(\Leftrightarrow B=\frac{1}{3}+\frac{12}{67}+\frac{13}{41}-\frac{79}{67}+\frac{28}{41}\)

\(\Leftrightarrow B=\frac{1}{3}+\left(\frac{12}{67}-\frac{79}{67}\right)+\left(\frac{13}{41}+\frac{28}{41}\right)\)

\(\Leftrightarrow B=\frac{1}{3}+\frac{-67}{67}+\frac{41}{41}\)

\(\Leftrightarrow B=\frac{1}{3}+\left(-1\right)+1\)

\(\Leftrightarrow B=\frac{1}{3}\left(2\right)\)

+)Từ (1) và (2) 

\(\Leftrightarrow A< 0< B\Leftrightarrow A< B\)

Vậy A<B

b)\(\frac{200420042004}{200520052005}va\frac{2004}{2005}\)

+)Ta có \(\frac{200420042004}{200520052005}=\frac{2004.100010001}{2005.100010001}=\frac{2004}{2005}\)

\(\Leftrightarrow\frac{200420042004}{200520052005}=\frac{2004}{2005}\)

c)\(C=\frac{2020^{2006}+1}{2020^{2007}+1}vaD=\frac{2020^{2005}+1}{2020^{2006}+1}\)

\(C=\frac{2020^{2006}+1}{2020^{2007}+1}< 1\)

\(\Leftrightarrow C< \frac{2020^{2006}+1+2019}{2020^{2007}+1+2019}=\frac{2020^{2006}+2020}{2020^{2007}+2020}=\frac{2020.\left(2020^{2005}+1\right)}{2020.\left(2020^{2006}+1\right)}=\frac{2020^{2005}+1}{2020^{2006}+1}\)

\(\Leftrightarrow C< D\)

Chúc bạn học tốt

27 tháng 4 2019

\(B=\frac{2018+2019}{2019+2020}\)

\(\Rightarrow B=\frac{2018}{2019+2020}+\frac{2019}{2019+2020}\)

\(\Rightarrow B< \frac{2018}{2019}+\frac{2019}{2020}=A\)

Vậy B < A

27 tháng 4 2019

\(B=\frac{2015+2016+2017}{2016+2017+2018}\)

\(\Rightarrow B=\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)

\(\Rightarrow B< \frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}=A\)

Vậy B < A

30 tháng 8 2020

a) \(\frac{21}{52}=\frac{210}{520}=1-\frac{310}{520}\)

\(\frac{213}{523}=1-\frac{310}{523}\)

Vì \(520< 523\)\(\Rightarrow\frac{1}{520}>\frac{1}{523}\)\(\Rightarrow\frac{310}{520}>\frac{310}{523}\)

\(\Rightarrow1-\frac{310}{520}< 1-\frac{310}{523}\)

hay \(\frac{21}{52}< \frac{213}{523}\)

b) \(\frac{1515}{9797}=\frac{15.101}{97.101}=\frac{15}{97}\)\(\frac{171171}{991991}=\frac{171.1001}{991.1001}=\frac{171}{991}\)

Ta có: \(\frac{15}{97}=\frac{150}{970}=1-\frac{820}{970}\)\(\frac{171}{991}=1-\frac{820}{991}\)

Vì \(970< 991\)\(\Rightarrow\frac{1}{970}>\frac{1}{991}\)\(\Rightarrow\frac{820}{970}>\frac{820}{991}\)

\(\Rightarrow1-\frac{820}{970}< 1-\frac{920}{991}\)

hay \(\frac{1515}{9797}< \frac{171171}{991991}\)

c) \(\frac{n+2}{n+3}=1-\frac{1}{n+3}\)\(\frac{n+3}{n+4}=1-\frac{1}{n+4}\)

Vì \(n\inℕ^∗\)\(\Rightarrow n+3< n+4\)\(\Rightarrow\frac{1}{n+3}>\frac{1}{n+4}\)

\(\Rightarrow1-\frac{1}{n+3}< 1-\frac{1}{n+4}\)

hay \(\frac{n+2}{n+3}< \frac{n+3}{n+4}\)

30 tháng 8 2020

d) \(\frac{n+7}{n+6}=1+\frac{1}{n+6}\)\(\frac{n+1}{n}=1+\frac{1}{n}\)

Vì \(n\inℕ^∗\)\(\Rightarrow n+6>n\)\(\Rightarrow\frac{1}{n+6}< \frac{1}{n}\)

\(\Rightarrow1+\frac{1}{n+6}< 1+\frac{1}{n}\)

hay \(\frac{n+7}{n+6}< \frac{n+1}{n}\)

6 tháng 1 2016

\(\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{x\left(x+1\right)}=\frac{2009}{2010}\)

\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-....-\frac{1}{x}+\frac{1}{x}-\frac{1}{\left(x+1\right)}=\frac{2009}{2010}\)

\(1-\frac{1}{x+1}=\frac{2009}{2010}\)

\(\frac{1}{x+1}=1-\frac{2009}{2010}=\frac{1}{2010}\)

\(\Leftrightarrow\) x + 1=  2010 

< = > x = 2010 - 1 = 2009