K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 5 2018

Giờ mình ko rảnh và máy tính đanhg hư nên ko làm đc thông cảm nhá

25 tháng 5 2018

HD

image006

Câu 1.

Tự CM.

Câu 2:

Kẻ AO cắt đường tròn tại F

Để ý góc ADE=góc EBC=góc AFC

Mà góc CAF+góc FAC =90°

⇒góc ADE+góc FAC =90°hay AF ⊥ DE.

Vậy đường thẳng kẻ qua A vuông góc DE luôn đi qua điểm cố định O.

Câu 3:

Gọi giao CQ và BP là O’

Dễ thấy góc ABP=góc QCE (cùng bằng 1/2 góc ABD = 1/2 góc ACE)

⇒ góc ABP+góc QCE=90° hay BP ⊥ CQ tại O’

⇒ các ΔBQN,  ΔCMP có đường phân giác đồng thời là đường cao nên cân tại B và C

⇒ O’M=O’P; O’N=O’Q; lại có QN ⊥ MP, nên tứ giác MNPQ là hình thoi

Bài 3. Cho ABC nội tiếp (O) đường kính AC (BA < BC). Trên đoạn thẳng OC lấy điểm I bất kì (I khác O và C). Đường thẳng BI cắt đường tròn tâm (O) tại điểm thứ hai là D. Kẻ CH vuông góc với BD (H thuộc BD), DK vuông góc với AC (K thuộc AC). a) Chứng minh tứ giác DHKC nội tiếp b) Cho độ dài AC bằng 4 cm và ABD = 600 . Tính diện tích tam giác ACD c) Đường thẳng đi qua K song song với BC cắt đường...
Đọc tiếp

Bài 3. Cho ABC nội tiếp (O) đường kính AC (BA < BC). Trên đoạn thẳng OC lấy điểm I bất kì (I khác O và C). Đường thẳng BI cắt đường tròn tâm (O) tại điểm thứ hai là D. Kẻ CH vuông góc với BD (H thuộc BD), DK vuông góc với AC (K thuộc AC).

a) Chứng minh tứ giác DHKC nội tiếp

b) Cho độ dài AC bằng 4 cm và ABD = 600 . Tính diện tích tam giác ACD

c) Đường thẳng đi qua K song song với BC cắt đường thẳng BD tại E. Chứng minh rằng khi I thay đổi trên đoạn thẳng OC thì E luôn nằm trên một đường tròn cố định.

Bài 4. Cho đường tròn tâm (O), hai điểm A, B nằm trên (O) sao cho AOB = 900 . Điểm C trên cung lớn AB sao cho AC > BC và tam giác ABC có ba góc đều nhọn. Các đường cao AI và BK của tam giác ABC cắt nhau tại H, BK cắt (O) tại N (N khác B); AI cắt (O) tại điểm M (M khác điểm A); NA cắt MB tại điểm D. Chứng minh rằng

a) Tứ giác CIHK nội tiếp

b) MN là đường kính của (O)

c) OC song song với DH.

 

GIÚP MÌNH VỚI!!!

GẤPPP

1
17 tháng 2 2020

Xin lỗi các bạn nhé 

Bài 3: góc ABD = 60 độ

Bài 4: AOB = 90 độ

22 tháng 5 2018

A B C D E F

b) \(\widehat{BCE}=\widehat{ACF}\leftarrow\orbr{\begin{cases}\widehat{BCE}=\widehat{BDA}\left(ABCDnt\right)\\\widehat{ACF}=\widehat{BDA}\left(ECDFnt\right)\end{cases}}\)

23 tháng 5 2018

A B C D E x y
a) Xét tứ giác BEDC có:
\(\widehat{BEC}=\widehat{BDC}\)
\(\widehat{BEC}\)và \(\widehat{BDC}\) cùng nhìn cạnh BC
=> BEDC là tứ giác nội tiếp 
b) Do BEDC là tứ giác nội tiếp nên: \(\widehat{BED}+\widehat{BCD}=180^o\)
Mà \(\widehat{BED}+\widehat{DEA}=180^o\Rightarrow\widehat{BCD}=\widehat{DEA}\)(*)
Mặt khác ta có:
\(\widehat{xAB}=\widehat{ACB}\)(cùng chắn cung AB)
hay \(\widehat{xAE}=\widehat{BCD}\)(**)
Từ (*) và (**) suy ra \(\widehat{DEA}=\widehat{xAE}\)
=> xy song song với ED (2 góc sole trong) (đpcm)

c) Do tứ giác BEDC là tứ giác nội tiếp
Mà \(\widehat{EBD}\)và \(\widehat{ECD}\)cùng nhìn cạnh ED
=> \(\widehat{EBD}=\widehat{ECD}\)(đpcm)

d) \(\widehat{BOC}=2\widehat{BAC}=120^o\)
DIện tích hình quạt BOC là: \(S_{qBOC}=\frac{\pi.R.n}{180}=\frac{\pi.2.120}{180}=\frac{4}{3}\pi\left(cm^2\right)\)
\(BC^2=OB^2+OC^2-2.OB.OC.cos120^o=12\Rightarrow BC=2\sqrt{3}\)
OH là đường cao, tam giác BOC cân tại O => BH=1/2.BC=\(\sqrt{3}\left(cm\right)\)
\(OH^2=OB^2-BH^2=2^2-3=1\Rightarrow OH=1\left(cm\right)\)
Diện tích tam giác BOC là: \(S_{\Delta BOC}=\frac{1}{2}.OH.BC=\frac{1}{2}.1.2\sqrt{3}=\sqrt{3}\left(cm^2\right)\)
=> Diện tích hình viên phân là: \(S_{vp}=S_{qBOC}-S_{\Delta BOC}=\frac{4}{3}\pi-\sqrt{3}\left(cm^2\right)\)

 

19 tháng 4 2020

C S N I M O K F A B D H

haizzz , vì mới lớp 8 nên mình chỉ làm được đến câu c, thôi , bạn thông cảm

a, Xét tam giác ABC vuông tại A và HA = HD

- Có \(\widehat{BAC}\)là góc nội tiếp đường tròn O chắn cung BC

- Mà BC là đường kính O

=> \(\widehat{BAC}=90^o\)

=> \(\Delta ABC\perp A\)

Xét \(\Delta OAD\)cân tại O ( Vì OA = OD do A , D cung thuộc O )

- Có AH là đường cao

=> OH là đường trung tuyến \(\Delta OAD\)

=> H là trug điểm AD

=> HA = HD

b, MN // SC , SC tiếp tuyến của (O)

Xét tam giác OSC có : M là trung điểm của OC

                                     N là trung điểm của OS

=> MN là đường TB của \(\Delta OSC\)

=> MN // SC

Mà \(MN\perp OC\left(gt\right)\)

\(\Rightarrow OC\perp SC\)tại S

- Xét đường tròn O có CO là bán kính ( vì \(C\in\left(O\right)\)

\(CO\perp SC\)tại C
=> SC là tiếp tuyến của đường tròn (O)

c, BH .  HC = AF . AK

Xét \(\Delta ABC\perp A\)có :

AH là đường cao 

=> AH2 = BH . HC

Xét đường tròn đường kính AH có F thuộc đường tròn

\(\Rightarrow\widehat{AFH}=90^o\)

\(\Rightarrow HF\perp AK\)tại F

Xét tam giác AHK vuông tại H , ta có : 

HF là đường cao 

=> AH2 = AF . AK

=> BH . HC = AF . AK ( = AH2 )

19 tháng 4 2020

GARENA FREE FIRE

1 tháng 7 2019

Tự vẽ hình nhé!

a, MN;MP là 2 tiếp tuyến của đường tròn (O) (gt)

\(\Rightarrow\widehat{ONM}=\widehat{OPM}=90^0\Rightarrow\) Tứ giác MNOP nội tiếp ngược

\(\Rightarrow\widehat{NMO}=\widehat{NPO}\)( hai góc nội tiếp cùng chắn chung NO)

b, Gọi C là trung điểm dây AB ta có C cố định

(d) không qua O nên \(OC\perp AB\)

            \(\widehat{OCM}=\widehat{OMN}=\widehat{OPM}=90^0\)

\(\Rightarrow\) C ; N ; P thuộc đường tròn đường kính OM

\(\Rightarrow\) C ; N ; P ; O ; M cùng thuộc một đường tròn

Mà O và C cố định

Do đó đường tròn ngoại tiếp tam giác MNP đi qua 2 điểm cố định O và C khi M lưu động trên đường thẳng (d)

c, Tứ giác MNOP là hình vuông 

\(\Leftrightarrow\) Hình thoi MNOP có \(\widehat{ONM}=90^0\)

\(\Leftrightarrow\) Tứ giác MNOP có MN = ON = OP = PM và \(\widehat{ONM}=90^0\)

\(\Leftrightarrow\)Tam giác OMN vuông cân tại N  \(\Leftrightarrow\) \(OM=ON\sqrt{2}=R\sqrt{2}\)

\(\Leftrightarrow\) M là giao điểm của đường tròn tâm O bán kính \(R\sqrt{2}\) và đường thẳng (d)

d, từ nghĩ đã...

\(\Leftrightarrow\) MN = ON = R ; \(\widehat{ONM}=90^0\)

1 tháng 7 2019

cái dòng cuối cùng của ý d là dòng thứ 4 của ý c nhé, bị nhầm đó

d, Làm tiếp:

Giả sử đoạn thẳng OM cắt đường tròn (O) tại I'

OM là tia phân giác \(\widehat{NOP}\)( vì MN;MP là 2 tiếp tuyến của (O))

\(\Rightarrow\widehat{NOM}=\widehat{POM}\Rightarrow\widebat{NI'}=\widebat{PI'}\)

\(sđ\widehat{NPI'}=\frac{1}{2}sđ\widebat{NI'}\)     ;   \(sđ\widehat{MPI'}=\frac{1}{2}sđ\widehat{PI'}\)

Do đó \(\widehat{NPI'}=\widehat{MPI'}\Rightarrow\) PI' là tia phân giác \(\widehat{MPN}\)

\(\Delta MPN\)có MI' là tia phân giác \(\widehat{NMP}\)( vì MN và MP là 2 tiếp tuyến ) và PI' là tia phân giác \(\widehat{MPN}\)nên I' là tâm đường tròn nội tiếp tam giác MNP 

Do đó \(I'\equiv I\)mà I' thuộc đường tròn (O;R)

Mặt khác :  O , I cùng thuộc nửa mặt phẳng bờ d

Do đó I lưu động trên cung lớn AB của đưởng tròn tâm O bán kính R

9 tháng 7 2019

A B C K M N H O

1) Dễ thấy ^CHN = ^CKN = 900 => Bốn điêm C,H,K,N cùng thuộc đường tròn đường kính CN

Hay tứ giác CNKH nội tiếp đường tròn (CN) (đpcm).

2) Sđ(BCnhỏ = 1200 => ^BOC = 1200 => ^BNC = 1/2.Sđ(BCnhỏ = 1/2.^BOC = 600

Vì tứ giác CNKH nội tiếp (cmt) nên ^KHC = 1800 - ^CNK = 1800 - ^BNC = 1200.

3) Hệ thức cần chứng minh tương đương với:

2KN.MN = AM2 - AN2 - MN2 <=> 2KN.MN = MN.MB - MN2 - AN2 (Vì AM2 = MN.MB)

<=> 2KN.MN = MN.BN - AN2 <=> AN2 = MN(BN - 2KN)

<=> AK2 + KN2 = MN(BK - KN) (ĐL Pytagoras) <=> AK2 + KN.KM = MN.BK

<=> AM2 - (MK2 - KN.KM) = MN.BK (ĐL Pytagoras) <=> AM2 - MK.MN = MN.BK

<=> AM2 = MN(BK + MK) = MN.MB <=> AM2 = AM2 (Hệ thức lượng đường tròn) (Luôn đúng)

Do đó hệ thức ban đầu đúng. Vậy KN.MN = 1/2.(AM- AN2 - MN2) (đpcm).