Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm
~ Tự vẽ hình, đó mik lm = đt nên k vẽ đc hình ~
a) Xét ∆BOA và ∆COK có:
OA = OK ( GT )
GÓC BOA = GÓC COK ( HAI GÓC ĐỐI )
OB = OC ( O LÀ TRUNG ĐIỂN BC )
=> ∆BOA = ∆COK ( c.g.c )
=> AB = KC ( hai cạnh tương ứng )
=> Góc ABC = GÓC KCB ( HAI GÓC TƯƠNG ỨNG )
MÀ hai góc này ở vị trí số le trong.
=> AB // CK
Mà BA | AC
=> CK | AC
Xét ∆ABC và ∆CKA có:
AB = CK ( cmt )
Góc BAC = góc KCA ( đó AB và CK cùng vuông góc với AC )
Cạnh AC chung.
=> ∆ABC = ∆CKA. ( c.g.c )
Bài alfm
Vì tâm giác ABC = tâm giác AKC
=> BC = AK.
Mà AO là trung điểm AK.
=> AO = 1/2 AK
Hay AO = 1/2BC
Bài 1 trc
Hình bác tự vẽ đc nhỉ
a) +) Xét \(\Delta\)ABD và \(\Delta\)ABC có
AB : cạnh chung
\(\widehat{DAB}=\widehat{BAC}\left(=90^o\right)\)
AD = AC (gt)
=> \(\Delta\) ABD = \(\Delta\) ABC (c-g-c )
b) Theo câu a ta có \(\Delta\) ABD = \(\Delta\) ABC
=> BD = BC ( 2 góc tương ứng )
+) Xét \(\Delta\) BDC có
\(\hept{\begin{cases}BD=BC\left(cmt\right)\\\widehat{C}=60^o\end{cases}}\)
=> \(\Delta\) BDC đều
c) +) Xét \(\Delta\) ABC vuông tại A
\(\Rightarrow\widehat{C}+\widehat{ABC}=90^o\) ( tính chất tam giác vuông )
\(\Rightarrow\widehat{ABC}+60^o=90^o\)
\(\Rightarrow\widehat{ABC}=30^o\)
+) Xét \(\Delta\) ABC vuông tại A có \(\widehat{ABC}=30^o\)
=> \(AC=\frac{1}{2}BC\) ( tính chất trong 1 tam giác vuông có 1 góc bằng 30 độ thì cạnh góc vuông đối diện vs góc 30 độ bằng 1 nửa cạnh huyền )
\(\Rightarrow BC=2.AC\)
\(\Rightarrow BC=2.4=8\) ( cm)
+) Xét \(\Delta\)ABC vuông tại A
\(\Rightarrow BC^2=AC^2+AB^2\) ( định lí Py-ta-go)
\(\Rightarrow AB^2=BC^2-AC^2\)
Bạn tự làm nốt nhá
Cau kia đang bận k giúp đc r
a.
Chứng minh ΔCHO=ΔCFOΔCHO=ΔCFO (cạnh huyền – góc nhọn)
suy ra: CH = CF. Kết luận ΔFCHΔFCH cân tại C.
- Vẽ IG //AC (G ∈∈ FH). Chứng minh ΔFIGΔFIG cân tại I.
- Suy ra: AH = IG, và ∠IGK=∠AHK∠IGK=∠AHK.
- Chứng minh ΔAHK=ΔIGKΔAHK=ΔIGK (g-c-g).
- Suy ra AK = KI..
b.
Vẽ OE ⊥⊥ AB tại E. Tương tự câu a ta có: ΔAEH,ΔBEFΔAEH,ΔBEF thứ tự cân tại A, B. Suy ra: BE = BF và AE = AH.
BA = BE + EA = BF + AH = BF + FI = BI. Suy ra: ΔABIΔABI cân tại B.
Mà BO là phân giác góc B, và BK là đường trung tuyến của ΔABIΔABI nên: B, O, K là ba điểm thẳng hàng.
bài 2b.
\(\left|x-y\right|+\left|y-z\right|+\left|z-x\right|=2019\)
\(\Rightarrow\left|x-y\right|+\left|y-z\right|+\left|z-x\right|+\left(x-y\right)+\left(y-z\right)+\left(z-x\right)=2019\)
\(\Rightarrow\left|x-y\right|+x-y+\left|y-z\right|+y-z+\left|z-x\right|+z-x=2019\)
Với \(a< 0\left(a\in Z\right)\)ta có:\(\left|a\right|+a=-a+a=0⋮2\)
Với \(a=0\)ta có:\(\left|a\right|+a=0⋮2\)
Với \(a>0\)ta có:\(\left|a\right|+a=2a⋮2\)
Vậy với mọi số nguyên a thì ta luôn có:\(\left|a\right|+a⋮2\)
Áp dụng vào bài toán,ta được:\(\left|x-y\right|+x-y+\left|y-z\right|+y-z+\left|z-x\right|+z-x⋮2\)
\(\Rightarrow2019⋮2\)(vô lý)
Vậy không thể tồn tại số nguyên x,y,z thỏa mãn:\(\left|x-y\right|+\left|y-z\right|+\left|z-x\right|=2019\)
A B C E D H I
Xét tam giác BCD và tam giác CBE
có BC chung
góc CDB = góc CEB=900
góc EBC=góc DCB ( vì tam giác ABC cân tại A)
suy ra tam giác BCD = tam giác CBE ( cạnh huyền-góc nhọn) (1)
b) Từ (1) suy ra góc CBD=góc BCE ( hai góc tương ứng) (2)
Mà góc CBD + góc DBE= góc CBE (3)
góc BCE+góc ECD = góc BCD (4)
góc EBC=góc DCB ( vì tam giác ABC cân tại A) (5)
Từ (2), (3), (4) , (5) suy ra góc DCE=góc EBD
hay góc IBE = góc ICD
c) Từ (1) suy ra AE=AD (hai cạnh tương ứng)
Xét tam giác vuông ADI và tam giác vuông AEI có
AI chung, AD=AE (CMT)
suy ra tam giá ADI = tam giác AEI (cạnh huyền-cạnh góc vuông)
suy ra góc EAI = góc DAI (hai góc tương ứng)
suy ra AI là tia phân giác của góc BAC
mà tam giác ABC cân tại A
suy ra AI là đường phân giác đồng thời là đường cao
AI vuông góc với BC tại H