Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
t 27 tháng 7 2017 lúc 13:57
2x/3 =3y/4 =4z/5 ⇒60.2x/3 =60.3y/4 =60.4z/5 ⇒40.x=45.y=48.z
40.x = 45.y => x/45 = y/40 => x/9 = y/8 => x/18=y/16 [1]
45.y = 48.z => y/48 = z/45 => y/16 = z/15 [2]
Từ [1] và [2] => x/18 = y/16 = z/15 = [x+y+z]/[18+16+15] = 49/49 = 1
=> x= 18 ; y= 16 ; z= 15
Vậy x= 18 ; y= 16 ; z= 15
a) 3x - / 2x + 1/=2
Ta co: /2x+1/ lon hon hoac bang 0
ma 3x- / 2x+1/ = 2
=> 3x la so tu nhien
=>3x-/2x+1/ = 3x - 2x+1 = 2
=>3x - 2x = 1
=>x(3-2) = 1
=>x . 1 = 1
=> x=1
KL........\
Tich cho minh nhe ! Cau b dang suy nghi .
a) Ta co: /2x+1/ lon hon hoac bang 0
ma 3x - /2x+1/ = 2
=> 3x la so tu nhien
=> 3x - /2x+1/ = 3x -2x +1 = 2\
=> 3x -2x =1
=>x=1
tick cho minh nha!!!!! Thank you nhieuuuuuuuuu !!!!
\(2x=3y=5z\)
=> \(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x+y-z}{15+10-6}=\frac{95}{19}=5\)
tự tính tiếp
a) xlđ
b) Ta có: \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\) => \(\frac{x}{2}=\frac{2y}{6}=\frac{3z}{12}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{2}=\frac{2y}{6}=\frac{3z}{12}=\frac{x+2y-3z}{2+6-12}=\frac{-20}{-4}=5\)
=> \(\hept{\begin{cases}\frac{x}{2}=5\\\frac{y}{3}=5\\\frac{z}{4}=5\end{cases}}\) => \(\hept{\begin{cases}x=5.2=10\\y=5.3=15\\z=5.4=20\end{cases}}\)
Vậy ...
c) tt
bạn bảo bạn làm câu a r nên mik thôi còn câu b là:
ta có
x-1/2 = y-2/3 = z-3/4 = 2x-2/4 = z-3/a
áp dụng t/c của dãy tỉ số = nhau, ta có:
2x-2+3y-6-z+3 / 4+9-4 = 2x+3y-z-5 / 9 = 50-5 / 9 =45 / 5 = 5
=>
x-1 / 2 = 5=>x-1=10 => x=11
y-2 / 3 = 5 => y-2 = 15 => y = 17
z-3 / 4 = 5=> z-3 = 20 =>z =23
tick nha bạn
a) Ta có 3x = 2y = z
=> \(\frac{3x}{6}=\frac{2y}{6}=\frac{z}{6}\)
\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{6}=\frac{x+y+z}{2+3+6}=\frac{99}{11}=9\)
=> \(\hept{\begin{cases}x=18\\y=27\\z=54\end{cases}}\)
b) 6x = 10y = 15z
=> \(\frac{6x}{30}=\frac{10y}{30}=\frac{15z}{30}\)
=> \(\frac{x}{5}=\frac{y}{3}=\frac{z}{2}=\frac{x+y+z}{5+3+2}=\frac{90}{10}=9\)
=> \(\hept{\begin{cases}x=45\\y=27\\z=18\end{cases}}\)
c) 6x = 4y = 2z
=> \(\frac{6x}{12}=\frac{4y}{12}=\frac{2z}{12}\)
=> \(\frac{x}{2}=\frac{y}{3}=\frac{z}{6}=\frac{x+y+z}{2+3+6}=\frac{27}{11}\)
=> \(\hept{\begin{cases}x=\frac{54}{11}\\y=\frac{81}{11}\\z=\frac{162}{11}\end{cases}}\)
d) x = 3y = 2z
=> \(\frac{x}{6}=\frac{3y}{6}=\frac{2z}{6}\)
=> \(\frac{x}{6}=\frac{y}{2}=\frac{z}{3}\)
=> \(\frac{2x}{12}=\frac{3y}{6}=\frac{4z}{12}=\frac{2x-3y+4z}{12-6+12}=\frac{48}{18}=\frac{8}{3}\)
=> \(\hept{\begin{cases}x=16\\y=\frac{16}{3}\\z=8\end{cases}}\)
đặt bt=k
x=2k+1;y=3k+2;z=4k+3
2x+3y-z=4k+2+9k+6-4k-3=9k+5=50
k=5
x=11;y=17;z=23
ÁP dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)<=> \(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{2x-2+3y-6-z+3}{4+9-4}=\frac{50-5}{9}=\frac{45}{9}=5\)
=> \(\hept{\begin{cases}\frac{x-1}{2}=5\\\frac{y-2}{3}=5\\\frac{z-3}{4}=5\end{cases}}\) <=> \(\hept{\begin{cases}x=11\\y=17\\z=23\end{cases}}\)
\(\Rightarrow\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{4}}=\frac{t}{\frac{1}{5}}\)
+ Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{4}}=\frac{t}{\frac{1}{5}}=\frac{x+y+z+t}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}}=\frac{77}{\frac{77}{60}}=60\)
Suy ra :
\(\frac{x}{\frac{1}{2}}=60\Rightarrow x=30\)
\(\frac{y}{\frac{1}{3}}=60\Rightarrow y=20\)
\(\frac{z}{\frac{1}{4}}=60\Rightarrow z=15\)
\(\frac{t}{\frac{1}{5}}=60\Rightarrow t=12\)
Vậy \(x=30;y=20;z=15;t=12\)
Chúc bạn học tốt !!!