\(a\)và 5 lần số đó có tổng các ch...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2015

Gọi tổng các chữ số của a và 5a là m

=> ta đã biết rằng : 1 số bất kì  luôn viết = ( 1 số chia hết cho 9 ) + ( tổng các chữ số của nó )

Nên:

a = 9q +m

5a=9p +m

=>5a - a = 9(q-p)

=>4a chia hết cho 9 ; 4 không chia hết cho 9

=> a chí hết cho 9

28 tháng 11 2015

câu hỏi tương tự nha bạn

30 tháng 11 2018

ab = ab

ba = ba

30 tháng 11 2018

* * *

câu a hình như thiếu đề

b) ab+ba

= 10a+b+10b+a

= 11a + 11b (Phần sau tự c/m vì nó dễ)

c)Hướng dẫn:phá ngoặc đi, kết quả cho ra 3n + 9,rồi lập luận

* * *

a)Gọi 5 số đó là a,a+1,a+2,a+3,a+4 ( a,a+1,a+2,a+3,a+4 \(\in\)N )

Ta có: a+(a+1)+(a+2)+(a+3)+(a+4)

= a+a+1+a+2+a+3+a+4

= 5a +( 1+2+3+4)

= 5a + 10 (Phần sau tự c/m)

b)tương tự câu a, nhưng kết quả cuối  = 6a + 15 ko chia hết cho 6(gọi 6 số đó là a,a+1,a+2,a+3,a+4,a+5(a,a+1,...)...)

Hok tốt!!!! ^_^

30 tháng 6 2018

Bài 1:

bn tham khảo tại link:

Câu hỏi của Suwani Knavera - Toán lớp 6 - Học toán với OnlineMath

chuk bn hok tốt ~

18 tháng 10 2018

B = x = 4 y = 0

Các câu còn lại thì mình chịu

7 tháng 4 2018

Theo bài ra ta có:

a= 11x+5

a= 13y+8

\(a+83=11x+5+83\Rightarrow a+83⋮11\)(1)

\(a+83=13y+8+83\Rightarrow a+83⋮13\)(2)

Từ (1) và (2) thì a+83 thuộc BC(11,13)

BCNN(11,13)=143

=> a+83 thuộc B(143)={0;143;286;...}

=> a thuộc {60;203;...}

Vì a là số bé nhất có 3 chữ số nên a= 203.

Vậy số cần tìm là 203.

7 tháng 4 2018

A= 9999931999-5555571997

= 999993499.4+3-555557499.4+1= 999993499.4.9999933-555557499.4.555557= (...1).(...7)-(...1).555557=(...7)-(...7)(...0) chia hết cho 5.

=> A chia hết cho 5

30 tháng 6 2018

1)

a) Do \(\hept{\begin{cases}12;18;16⋮2\\A⋮2\end{cases}\Rightarrow x⋮2}\)

\(\Rightarrow x\in\left\{0;2;4;6;...\right\}\)

b) Do \(\hept{\begin{cases}12;18;16⋮2\\A⋮̸2\end{cases}}\Rightarrow x⋮̸2\)

\(\Rightarrow x\in\left\{1;3;5;7;...\right\}\)

2)

Ta có:

Do \(a:36\)\(16\Rightarrow a=36k+16\left(k\in N\right)\)

+ Vì \(\hept{\begin{cases}36k⋮2\\16⋮2\end{cases}\Rightarrow a⋮2}\)

+ Vì \(\hept{\begin{cases}36k⋮4\\16⋮4\end{cases}\Rightarrow a⋮4}\)

+ Vì \(\hept{\begin{cases}36k⋮18\\16⋮̸18\end{cases}\Rightarrow a⋮̸}18\)

7 tháng 5 2019

mk làm câu 1:

Ta cso công thức:..9^2n(với n là số nguyên) có tận cùng =1

Ta có:2009^2n+14

           =...1+14=...5 chia hết cho 5

31 tháng 7 2018

vì 3x5y chia hết cho 2 và 5  

=> y =0 =>3x50

mà 3x5y chia het cho  9

=> 3+x+5+0 chia het cho 9

=>8+x chia het cho 9

=> x=1

31 tháng 7 2018

câu trả lời la : 3252 : 2 = 1626

                     3255 : 5 =  651

                     3159 : 9 =  351

28 tháng 5 2018

a) Theo bài ra, ta có:

        \(\overline{abbc}=\overline{ab}.\overline{ac}.7\)

\(\Rightarrow\overline{ab}.100+\overline{bc}=\overline{ab}.\overline{ac}.7\)

\(\Rightarrow100+\frac{\overline{bc}}{\overline{ab}}=\overline{ac}.7\)

Ta thấy : \(\frac{10}{90}\le\frac{\overline{bc}}{\overline{ab}}\le\frac{91}{10}\)

\(\Rightarrow100+\frac{10}{90}\le100+\frac{\overline{bc}}{\overline{ab}}\le100+\frac{91}{10}\)

\(\Rightarrow\frac{901}{9}\le100+\frac{\overline{bc}}{\overline{ab}}\le\frac{1091}{10}.\)

Ta thấy: \(\overline{ac}\in N\Rightarrow\overline{ac}.7\in N\)

Mà \(\overline{ac}.7⋮7\Rightarrow\overline{ac}.7=105\)

\(\Rightarrow\overline{ac}=105:7=15\Rightarrow a=1;c=5\)

\(\Rightarrow100+\frac{\overline{bc}}{\overline{ab}}=105\Rightarrow\frac{\overline{bc}}{\overline{ab}}=105-100=5\)

\(\Rightarrow\overline{bc}=5.\overline{ab}\Rightarrow b.10+c=50.a+5b\)

\(\Rightarrow5b+5=50\Rightarrow5b=50-5=45\)

\(\Rightarrow b=45:5=9.\)

                                  Vậy \(a=1;b=9;c=5.\)

b) Theo bài ra, ta có:

     \(A=\frac{1}{2}\left(7^{2012^{2015}}-3^{92^{94}}\right)\)

 Vì \(7>3;2012>92;2015>94\Rightarrow7^{2012^{2015}}>3^{92^{94}}\)      

\(\Rightarrow7^{2012^{2015}}-3^{92^{94}}\)là một số tự nhiên.

     \(2012\equiv0\left(mod4\right)\)

\(\Rightarrow2012^{2015}\equiv0\left(mod4\right)\)

\(\Rightarrow2012^{2015}=4m\left(m\in N\right)\)

\(\Rightarrow7^{2012^{2015}}=7^{4m}=\left(7^4\right)^m=\overline{...1}^m=\overline{...1}.\)

          \(92\equiv0\left(mod4\right)\)

\(\Rightarrow92^{94}\equiv0\left(mod4\right)\)

\(\Rightarrow92^{94}=4n\left(n\in N\right)\)

\(\Rightarrow3^{92^{94}}=3^{4n}=\left(3^4\right)^n=\overline{...1}^n=\overline{...1}.\)

Thay vào, ta được :

      \(A=\frac{1}{2}\left(\overline{...1}-\overline{...1}\right)\)

 \(\Rightarrow A=\frac{1}{2}\left(\overline{...0}\right)\)

\(\overline{...0}\)là một số tự nhiên chia hết cho 10 \(\Rightarrow\)nó chia hết cho 2

\(\Rightarrow\)\(A\)là một số tự nhiên có chữ số tận cùng là 0 hoặc 5 

\(\Rightarrow A⋮5.\)

Vậy A là một số tự nhiên chia hết cho 5.

\(\)

S=1+2+22+23+.....+297+298+299

S=20+2+22+23+.....+297+298+299

2S=2.(20+2+22+23+.....+297+298+299)

2S=21+22+23+24+....+298+299+2100

2S-S=(21+22+23+24+....+298+299+2100)-(20+2+22+23+.....+297+298+299)

S=2100-20

S=2100-1

bS=1+2+22+23+.....+297+298+299

 S=(1+2)+(22+23)+...+(296+297)+(298+299)

S=(1+2)+22.(1+2)+........+296.(1+2)+298.(1+2)

S=3+22.3+....+296.3+298.3

S=3.(1+22+.....+296+298)\(⋮\)3

Vậy S\(⋮\)

c Ta có:S=2100-1

2100=24.25=(24)25

Ta có: 24 tân cùng là 6

=>(24)25 tận cùng là 6

Hay 2100=(24)25 tận cùng là 6

=>2100-1 tận cùng là 5

Vậy S tận cùng là 5

Chúc bn học tốt