Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
* * *
câu a hình như thiếu đề
b) ab+ba
= 10a+b+10b+a
= 11a + 11b (Phần sau tự c/m vì nó dễ)
c)Hướng dẫn:phá ngoặc đi, kết quả cho ra 3n + 9,rồi lập luận
* * *
a)Gọi 5 số đó là a,a+1,a+2,a+3,a+4 ( a,a+1,a+2,a+3,a+4 \(\in\)N )
Ta có: a+(a+1)+(a+2)+(a+3)+(a+4)
= a+a+1+a+2+a+3+a+4
= 5a +( 1+2+3+4)
= 5a + 10 (Phần sau tự c/m)
b)tương tự câu a, nhưng kết quả cuối = 6a + 15 ko chia hết cho 6(gọi 6 số đó là a,a+1,a+2,a+3,a+4,a+5(a,a+1,...)...)
Hok tốt!!!! ^_^
Theo bài ra ta có:
a= 11x+5
a= 13y+8
\(a+83=11x+5+83\Rightarrow a+83⋮11\)(1)
\(a+83=13y+8+83\Rightarrow a+83⋮13\)(2)
Từ (1) và (2) thì a+83 thuộc BC(11,13)
BCNN(11,13)=143
=> a+83 thuộc B(143)={0;143;286;...}
=> a thuộc {60;203;...}
Vì a là số bé nhất có 3 chữ số nên a= 203.
Vậy số cần tìm là 203.
1)
a) Do \(\hept{\begin{cases}12;18;16⋮2\\A⋮2\end{cases}\Rightarrow x⋮2}\)
\(\Rightarrow x\in\left\{0;2;4;6;...\right\}\)
b) Do \(\hept{\begin{cases}12;18;16⋮2\\A⋮̸2\end{cases}}\Rightarrow x⋮̸2\)
\(\Rightarrow x\in\left\{1;3;5;7;...\right\}\)
2)
Ta có:
Do \(a:36\)dư\(16\Rightarrow a=36k+16\left(k\in N\right)\)
+ Vì \(\hept{\begin{cases}36k⋮2\\16⋮2\end{cases}\Rightarrow a⋮2}\)
+ Vì \(\hept{\begin{cases}36k⋮4\\16⋮4\end{cases}\Rightarrow a⋮4}\)
+ Vì \(\hept{\begin{cases}36k⋮18\\16⋮̸18\end{cases}\Rightarrow a⋮̸}18\)
mk làm câu 1:
Ta cso công thức:..9^2n(với n là số nguyên) có tận cùng =1
Ta có:2009^2n+14
=...1+14=...5 chia hết cho 5
vì 3x5y chia hết cho 2 và 5
=> y =0 =>3x50
mà 3x5y chia het cho 9
=> 3+x+5+0 chia het cho 9
=>8+x chia het cho 9
=> x=1
câu trả lời la : 3252 : 2 = 1626
3255 : 5 = 651
3159 : 9 = 351
a) Theo bài ra, ta có:
\(\overline{abbc}=\overline{ab}.\overline{ac}.7\)
\(\Rightarrow\overline{ab}.100+\overline{bc}=\overline{ab}.\overline{ac}.7\)
\(\Rightarrow100+\frac{\overline{bc}}{\overline{ab}}=\overline{ac}.7\)
Ta thấy : \(\frac{10}{90}\le\frac{\overline{bc}}{\overline{ab}}\le\frac{91}{10}\)
\(\Rightarrow100+\frac{10}{90}\le100+\frac{\overline{bc}}{\overline{ab}}\le100+\frac{91}{10}\)
\(\Rightarrow\frac{901}{9}\le100+\frac{\overline{bc}}{\overline{ab}}\le\frac{1091}{10}.\)
Ta thấy: \(\overline{ac}\in N\Rightarrow\overline{ac}.7\in N\)
Mà \(\overline{ac}.7⋮7\Rightarrow\overline{ac}.7=105\)
\(\Rightarrow\overline{ac}=105:7=15\Rightarrow a=1;c=5\)
\(\Rightarrow100+\frac{\overline{bc}}{\overline{ab}}=105\Rightarrow\frac{\overline{bc}}{\overline{ab}}=105-100=5\)
\(\Rightarrow\overline{bc}=5.\overline{ab}\Rightarrow b.10+c=50.a+5b\)
\(\Rightarrow5b+5=50\Rightarrow5b=50-5=45\)
\(\Rightarrow b=45:5=9.\)
Vậy \(a=1;b=9;c=5.\)
b) Theo bài ra, ta có:
\(A=\frac{1}{2}\left(7^{2012^{2015}}-3^{92^{94}}\right)\)
Vì \(7>3;2012>92;2015>94\Rightarrow7^{2012^{2015}}>3^{92^{94}}\)
\(\Rightarrow7^{2012^{2015}}-3^{92^{94}}\)là một số tự nhiên.
\(2012\equiv0\left(mod4\right)\)
\(\Rightarrow2012^{2015}\equiv0\left(mod4\right)\)
\(\Rightarrow2012^{2015}=4m\left(m\in N\right)\)
\(\Rightarrow7^{2012^{2015}}=7^{4m}=\left(7^4\right)^m=\overline{...1}^m=\overline{...1}.\)
\(92\equiv0\left(mod4\right)\)
\(\Rightarrow92^{94}\equiv0\left(mod4\right)\)
\(\Rightarrow92^{94}=4n\left(n\in N\right)\)
\(\Rightarrow3^{92^{94}}=3^{4n}=\left(3^4\right)^n=\overline{...1}^n=\overline{...1}.\)
Thay vào, ta được :
\(A=\frac{1}{2}\left(\overline{...1}-\overline{...1}\right)\)
\(\Rightarrow A=\frac{1}{2}\left(\overline{...0}\right)\)
\(\overline{...0}\)là một số tự nhiên chia hết cho 10 \(\Rightarrow\)nó chia hết cho 2
\(\Rightarrow\)\(A\)là một số tự nhiên có chữ số tận cùng là 0 hoặc 5
\(\Rightarrow A⋮5.\)
Vậy A là một số tự nhiên chia hết cho 5.
\(\)
S=1+2+22+23+.....+297+298+299
S=20+2+22+23+.....+297+298+299
2S=2.(20+2+22+23+.....+297+298+299)
2S=21+22+23+24+....+298+299+2100
2S-S=(21+22+23+24+....+298+299+2100)-(20+2+22+23+.....+297+298+299)
S=2100-20
S=2100-1
bS=1+2+22+23+.....+297+298+299
S=(1+2)+(22+23)+...+(296+297)+(298+299)
S=(1+2)+22.(1+2)+........+296.(1+2)+298.(1+2)
S=3+22.3+....+296.3+298.3
S=3.(1+22+.....+296+298)\(⋮\)3
Vậy S\(⋮\)3
c Ta có:S=2100-1
2100=24.25=(24)25
Ta có: 24 tân cùng là 6
=>(24)25 tận cùng là 6
Hay 2100=(24)25 tận cùng là 6
=>2100-1 tận cùng là 5
Vậy S tận cùng là 5
Chúc bn học tốt
Gọi tổng các chữ số của a và 5a là m
=> ta đã biết rằng : 1 số bất kì luôn viết = ( 1 số chia hết cho 9 ) + ( tổng các chữ số của nó )
Nên:
a = 9q +m
5a=9p +m
=>5a - a = 9(q-p)
=>4a chia hết cho 9 ; 4 không chia hết cho 9
=> a chí hết cho 9
câu hỏi tương tự nha bạn