Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. f(-2) = 3.(-2)2-1 = 3.4-1 = 11
f(1/4) = 3.(1/4)2-1=-13/16
2. f(x) = 47
=> 3x2 - 1 = 47
=> 3x2 = 48
=> x2 = 16
=> x = 4 hoặc x = -4
3. f(x) = f(-x)
<=> 3x2 - 1 = 3.(-x)2 - 1
Mà x2 = (-x)2
=> 3x2 - 1 = 3.(-x)2 - 1
=> f(x) = f(-x) (đpcm)
1) Cho f(x) =0
=> x^2 + 6x +5 =0
x^2 +x +5x +5 = 0
x. ( x+1) + 5.(x+1) =0
(x+1) .(x+5) =0
=> x+1 =0 => x +5 =0
x =-1 x = -5
KL: x =-1 hoặc x =-5
bn lm như trên mk nha!!!!!
\(f\left(x\right)=12\Rightarrow x^2-5x+6=12\Rightarrow x^2-5x-6=0\)
\(\Rightarrow x^2+x-6x-6=0\Rightarrow x\left(x+1\right)-6\left(x+1\right)=0\)
\(\Rightarrow\left(x-6\right)\left(x+1\right)=0\Rightarrow\orbr{\begin{cases}x=6\\x=-1\end{cases}}\)
\(f\left(x\right)=20\Rightarrow x^2-5x+6-20=0\Rightarrow x^2-5x-14=0\)
\(\Rightarrow x^2+2x-7x-14=0\)
\(\Rightarrow\left(x-7\right)\left(x+2\right)=0\Rightarrow\orbr{\begin{cases}x=7\\x=-2\end{cases}}\)
\(f\left(x\right)=1+x+x^2+x^3+...+x^{2010}+x^{2011}\)
\(f\left(1\right)=1+1+1+1+....+1+1\)(2013 hạng tử)
\(f\left(1\right)=2013\)
\(f\left(-1\right)=1+\left(-1\right)+\left(-1\right)^2+\left(-1\right)^3+....+\left(-1\right)^{2010}+\left(-1\right)^{2011}\)
\(f\left(-1\right)=1+\left(-1\right)+1+\left(-1\right)+...+1+\left(-1\right)\)
\(f\left(-1\right)=\left[1+\left(-1\right)\right]+\left[1+\left(-1\right)\right]+....+\left[1+\left(-1\right)\right]+\left(-1\right)\)
\(f\left(-1\right)=-1\)
Nhầm :v làm lại
\(f\left(1\right)=1+1+1^2+1^3+....+1^{2010}+1^{2011}.\)(2012 số 1)
\(f\left(1\right)=1.2012=2012\)
\(f\left(-1\right)=1+\left(-1\right)+\left(-1\right)^2+....+\left(-1\right)^{2010}+\left(-1\right)^{2011}\)
\(f\left(-1\right)=\left(1-1\right)+\left(1-1\right)+\left(1-1\right)+...+\left(1-1\right)\)(1006 cặp)
\(f\left(-1\right)=0\)
a) \(f\left(x\right)-g\left(x\right)=\left[x\left(x^2-2x+7\right)-1\right]-\left[x\left(x^2-2x-1\right)-1\right]\)
\(f\left(x\right)-g\left(x\right)=x^3-2x^2+7x-1-x^3+2x^2+x+1\)
\(f\left(x\right)-g\left(x\right)=8x\)
\(f\left(x\right)+g\left(x\right)=x\left(x^2-2x+7\right)-1+x\left(x^2-2x-1\right)-1\)
\(f\left(x\right)+g\left(x\right)=x^3-2x^2+7x-1+x^3-2x^2-x-1\)
\(f\left(x\right)+g\left(x\right)=2x^3-4x^2+6x-2\)
b) 8x=0
=> x=0
=> Nghiệm đa thức f(x)-g(x)
c) Thay \(x=-\frac{3}{2}\)vào BT f(x)+g(x) ta được :
\(2.\left(-\frac{3}{2}\right)^3-4\left(-\frac{3}{2}\right)^2+6\left(-\frac{3}{2}\right)-2\)
\(=6,75+9-9-2\)
\(=4,75\)
#H
Cho x=2018\(\Rightarrow2f\left(2018\right)+f\left(\frac{1}{2018}\right)=2018\) (1)
Cho x=\(\frac{1}{2018}\)\(\Rightarrow2f\left(\frac{1}{2018}\right)+f\left(\frac{1}{\frac{1}{2018}}\right)=\frac{1}{2018}\Rightarrow2f\left(\frac{1}{2018}\right)+f\left(2018\right)=\frac{1}{2018}\) (2)
Lấy (1) x 2 - (2)\(\Rightarrow4f\left(2018\right)+2f\left(\frac{1}{2018}\right)-2f\left(\frac{1}{2018}\right)-f\left(2018\right)=2018-\frac{1}{2018}\)
\(\Rightarrow3f\left(2018\right)=\frac{4072323}{2018}\Rightarrow f\left(2018\right)=\frac{4072323}{6054}\)
f(x)=2x^2-5
f(-2)=2*(-2)^2-5=2*4-5=8-5=3
f(2)=3