Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=1/1-1/2+1/2-1/3+1/3-1/4+.........+1/1999-1/2000
=1/1-1/2000
=1999/2000<3/4
\(A=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+.......+\frac{1}{99.100}\)
\(=\frac{3-2}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{4.5}+...+\frac{100-99}{99.100}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{2}-\frac{1}{100}\)
\(=\frac{49}{100}\)
\(A=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{2}+\frac{1}{100}=\frac{49}{100}\)
\(A=\)\(\frac{1}{2}+\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+\frac{29}{30}+\frac{41}{42}+\frac{55}{56}+\frac{71}{72}+\frac{89}{90}\)
\(A=\)\(1-\frac{1}{2}+1-\frac{1}{6}+1-\frac{1}{12}+1-\frac{1}{20}+1-\frac{1}{30}+1-\frac{1}{42}+1-\frac{1}{56}+1-\frac{1}{72}+1-\frac{1}{90}\)
\(A=\)\(9-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}\right)\)
\(A=\)\(9-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}\right)\)
\(A=\)\(9-\left(1-\frac{1}{10}\right)\)
\(A=\)\(9-\frac{9}{10}\)
\(A=\)\(\frac{81}{10}\)
A=(1-1/2)+(1-1/6)+...+(1-89/90)
A=1x9-(1/2+1/6+...+1/90)
A=9-(1/1x2+1/2x3+...+1/9x10)
A=9-(1-1/2+1/2-1/3+1/3+...+1/9 -1/10)
A=9-(1-1/10)
A=9-9/10
A=81/10=8,1
hok tốt nhé
a, \(A=\frac{5}{11.16}+\frac{5}{16.21}+\frac{5}{21.26}+...+\frac{5}{61.66}\)
\(A=\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+\frac{1}{21}-\frac{1}{26}+...+\frac{1}{61}-\frac{1}{66}\)
\(A=\frac{1}{11}-\frac{1}{66}\)
\(A=\frac{5}{66}\)
b, \(B=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\)
\(B=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\)
\(B=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\)
\(B=1-\frac{1}{7}\)
\(B=\frac{6}{7}\)
_Học tốt nha_
Bài 1:
a) b) c) sẽ có bạn giải cho em thôi vì nó dễ tính tay cũng đc
d) \(\frac{4}{2.5}+\frac{4}{5.8}+...+\frac{4}{23.26}\)
\(=\frac{4}{3}.\left(\frac{3}{2.5}+\frac{3}{5.8}+...+\frac{3}{23.26}\right)\)
\(=\frac{4}{3}.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{23}-\frac{1}{26}\right)\)
\(=\frac{4}{3}.\left(\frac{1}{2}-\frac{1}{26}\right)\)
\(=\frac{4}{3}.\frac{6}{13}\)
\(=\frac{8}{13}\)
Bài 2:
a) b) c)
d)\(|\frac{5}{8}x+\frac{6}{7}|-\frac{4}{7}=\frac{10}{7}\)
\(\Leftrightarrow|\frac{5}{8}x+\frac{6}{7}|=2\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{5}{8}x+\frac{6}{7}=2\\\frac{5}{8}x+\frac{6}{7}=-2\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}\frac{5}{8}x=\frac{8}{7}\\\frac{5}{8}x=\frac{-20}{7}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{64}{35}\\x=\frac{-32}{7}\end{cases}}}\)
Vậy \(x\in\left\{\frac{64}{35};\frac{-32}{7}\right\}\)
Bài 1 :
a) \(\left(\frac{2}{5}-\frac{5}{8}\right):\frac{11}{30}+\frac{1}{8}\)
\(=\frac{-9}{40}:\frac{11}{30}+\frac{1}{8}\)
\(=\frac{-27}{44}+\frac{1}{8}\)
\(=\frac{-43}{88}\)
Ta có : \(\frac{x-1}{12}=\frac{3}{x-1}\)
\(\Rightarrow\left(x-1\right).\left(x-1\right)=12.3\)
\(\Rightarrow\left(x-1\right)^2=36\)
\(\Rightarrow\orbr{\begin{cases}\left(x-1\right)^2=6^2\\\left(x-1\right)^2=\left(-6\right)^2\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x-1=6\\x-1=-6\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=7\\x=-5\end{cases}}\)
Vậy \(x=7;x=-5\)
\(\frac{x-1}{12}=\frac{3}{x-1}ĐKXĐ\left(x\ne1\right)\)
\(\left(x-1\right)^2=36\)
\(\left(x-1\right)^2=6^2\)
\(\Rightarrow\orbr{\begin{cases}x-1=6\\x-1=-6\end{cases}\Rightarrow\orbr{\begin{cases}x=7\\x=-5\end{cases}}}\)tm ))
Bài 1: Rút gọn các phân số sau đến tối giản:
a) \(\frac{49+7.49}{49}=\frac{49\left(1+7\right)}{49}=8\)
b) \(\frac{9.6-9.3}{18}=\frac{9\left(6-3\right)}{18}=\frac{27}{18}=\frac{3}{2}\)
c) \(\frac{17.5-17}{3-20}=\frac{17\left(5-1\right)}{-17}=\frac{68}{-17}=-4\)
Bài 2: Tính giá trị của biểu thức:
\(A=\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}+\frac{1}{132}\)
\(A=\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}+\frac{1}{11.12}\)
\(A=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}\)
\(A=\frac{1}{5}-\frac{1}{12}\)
\(A=\frac{7}{60}\)
Bài 3: Một số chia cho 7 dư 3, chia cho 17 dư 12, chia cho 23 dư 7. Hỏi số đó chia cho 2737 dư bao nhiêu?
Gọi số đã cho là A, theo đề bài ta có :
A = 7.a + 3 = 17.b + 12 = 23.c + 7
Mặt khác :
A + 39 = 7.a + 3 + 39 = 17.b + 12 + 39 = 23.c + 7 + 39
= 7(a + 6) = 17(b + 3) = 23(c + 2)
Như vậy A + 39 đồng thời chia hết cho 7, 17 và 23
Nhưng 7, 17 và 23 đồng thời là 3 số nguyên tố cùng nhau nên :
(A + 39) 7.17.23 hay (A + 39) 2737
Suy ra A + 39 = 2737.k suy ra A = 2737.k 39 = 2737(k - 1) + 2698
Do 2698 < 2737 nên 2698 là số dư của phép chia A cho 2737
\(a,\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{97.98}+\frac{1}{98.99}+\frac{1}{99.100}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{97}-\frac{1}{98}+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{1}-\frac{1}{100}\)
\(=\frac{100}{100}-\frac{1}{100}\)
\(=\frac{99}{100}\)
\(b,\frac{x}{y}=\frac{3}{5}\)
\(\Leftrightarrow\frac{x}{3}=\frac{y}{5}\)
\(\text{Áp dụng tính chất dãy tỉ số bằng nhau ta có :}\)
\(\frac{x}{3}=\frac{y}{5}=\frac{x+y}{3+5}=\frac{18}{8}=\frac{9}{4}\)
\(\Rightarrow\frac{x}{3}=\frac{9}{4}\Rightarrow x=\frac{27}{4}\)
\(\frac{y}{5}=\frac{9}{4}\Rightarrow y=\frac{45}{4}\)
tìm số tự nhiên a lớn nhất sao cho:13 ;15 ;61 chia hết cho a đều dư 1
Tham khảo
Câu hỏi của Sakura kun - Toán lớp 6 - Học toán với OnlineMath