Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề bài sai nhé, tìm GTNN chứ không phải GTLN. Bài này không có GTLN.
Biệt thức \(\Delta=\left(m-1\right)^2-4\left(-m^2+m-2\right)=5m^2-6m+9=4m^2+\left(m-3\right)^2>0\) với mọi \(m\). Do đó phương trình đã cho luôn có 2 nghiệm phân biệt.
Theo định lý Vi-et ta có \(x_1+x_2=m-1,x_1x_2=-m^2+m-2\to x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)
\(\to x_1^2+x_2^2=\left(m-1\right)^2-2\left(-m^2+m-2\right)=3m^2-4m+5.\)
Giá trị lớn nhất không tồn tại vì khi m lớn tùy ý thì \(x_1^2+x_2^2\) lớn tùy ý.
Ta có \(3m^2-4m+5=\frac{1}{3}\left(3m-2\right)^2+5-\frac{4}{3}\ge5-\frac{4}{3}=\frac{11}{3}.\) Suy ra \(x_1^2+x_2^2\ge\frac{11}{3}.\) Dấu bằng xảy ra khi và chỉ khi \(m=\frac{2}{3}\). Vậy \(m=\frac{2}{3}\) thì \(x_1^2+x_2^2\) đạt giá trị nhỏ nhất.
<=> (x2 - 2x)2 + x2 - 2x + 1 - 13 = 0
<=> (x2 - 2x)2 + x2 - 2x - 12 = 0
Đặt t = x2 - 2x
Khi đó ta có pt: t2 + t - 12 = 0
<=> t2 + 4t - 3t - 12 = 0
<=> (t - 3)(t + 4) = 0 <=> \(\orbr{\begin{cases}t=3\\t=-4\end{cases}}\)
*Với t = 3 ta có: x2 - 2x = 3
<=> x2 - 2x - 3 = 0
<=> (x - 3)(x + 1) = 0 <=> \(\orbr{\begin{cases}x=3\\x=-1\end{cases}}\)
*Với t = -4 ta có: x2 - 2x = -4
<=> x2 - 2x + 4 = 0
<=> (x - 1)2 + 3 = 0 (Vô nghiệm)
Vậy S = {3;-1}
(x2-2x)2 + (x-1)2 - 13 = 0
<=> x^4 - 4x^3 + 4x^2 + x^2 - 2x + 1 - 13 = 0
<=> x^3 - 4x^3 + 5x^2 - 2x - 12 = 0
<=> x^4 + x^3 - 5x^3 - 5x^2 + 10x^2 + 10x - 12x - 12 = 0
<=> x^3(x + 1) - 5x^2(x + 1) + 10x(x + 1) - 12(x + 1) = 0
<=> (x^3 - 5x^2 + 10x - 12)(x + 1) = 0
<=> (x^3 - 3x^2 - 2x^2 + 6x + 4x - 12)(x + 1) = 0
<=> [x^2(x - 3) - 2x(x - 3) + 4(x - 3)](x + 1) = 0
<=> (x^2 - 2x + 4)(x - 3)(x + 1) = 0
có x^2 - 2x + 4 = (x - 1)^2 + 3 lớn hơn 0
<=> x - 3 = 0 hoặc x + 1 = 0
<=> x = 3 hoặc x = -1
mọi người giúp mình với ạ,mai mình phải nộp rồi nhưng kô biết làm .Mong mn giúp đỡ!!!
1) Đk: x khác -3
x khác 1
Biểu thức \(\Leftrightarrow\dfrac{x^2-x}{x^2+2x-3}+\dfrac{2x+6}{x^2+2x-3}=\dfrac{12}{x^2+2x-3}\)
\(\Leftrightarrow x^2-x+2x+6=12\Leftrightarrow x^2+x-6=0\Leftrightarrow\left(x-2\right)\left(x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)
kl: x thuộc {-3;2}
Câu a thì mình chịu rồi @@ sorry nha
Còn câu b, bạn thấy rằng x2-3x+2-x2+x+1+2x-3=0 đúng không nào?
Nếu như bạn còn nhớ công thức a+b+c=0 <=> a3+b3+c3=3abc
Thì chắc chắn là bạn sẽ giải ra được bài này thôi. Đáp số là x=1 hoặc x=2 hoặc x=3/2 bạn nhé.
Chúc bạn giải được câu b này. Nếu như vẫn còn thắc mắc thì trả lời lại cho mình để mình gừi bài giải chi tiết nhé, do giờ mình đang bận @@