Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)11 3/13-(2 4/7+5 3/13)=11+3/13-(2+4/7+5+3/13)=11+3/13-2-4/7-5-3/13=(11-2-5)+(3/13-4/7-3/13)=4+(0-4/7)=4+-4/7=28/7-4/7=28-4/7=24/7=3 3/7(phải tính ta hỗn số nha bn)
SORRY MIK CHỈ LM` 1 CÁI CÒN LẠI ĐỂ BN ĐÓ
THỰC RA MIK BIK HẾT R` NHƯNG ĐỂ BN TỰ MIK LM` ĐÓ NHA
NẾU KO LM` ĐC THÌ NHỜ MIK NHẮN TIN HOẶC GỌI QUA 01288449416 NHA R` MIK LÊN GIẢI CHO.
\(\text{}\text{}11\frac{3}{13}-\left(2\frac{4}{7}+5\frac{3}{13}\right)=11\frac{3}{13}-2\frac{4}{7}-5\frac{3}{13}=11\frac{3}{13}-5\frac{3}{13}-2\frac{4}{7}=6-2\frac{4}{7}=5\frac{7}{7}-2\frac{4}{7}=3\frac{3}{7}\)
a,1/5+2/5+3/5+4/5+...+9/5
=(1+2+3+4+...+9)/5
=45/5
=9
b,17,8(3,7+5,7)-7,8(4,6+4,8)
=17,8.9,4-7,8.9,4
=9,4(17,8-7,8)
=9,4.10
=94
P/s : nhìn thì khủng thật ! :v
\(B=81.\left[\frac{\left[12-\frac{12}{7}-\frac{12}{289}-\frac{12}{85}\right]}{4-\frac{4}{7}-\frac{4}{289}-\frac{4}{85}}:\frac{5+\frac{5}{13}+\frac{5}{169}+\frac{5}{91}}{6+\frac{6}{13}+\frac{6}{169}+\frac{6}{91}}\right].\frac{158158158}{711711711}\)
\(B=81.\left[\frac{12.\left(1-\frac{1}{7}-\frac{1}{289}-\frac{1}{85}\right)}{4.\left(1-\frac{1}{7}-\frac{1}{289}-\frac{1}{85}\right)}:\frac{5.\left(1+\frac{1}{13}+\frac{1}{169}+\frac{1}{91}\right)}{6.\left(1+\frac{1}{13}+\frac{1}{169}+\frac{1}{91}\right)}\right].\frac{158}{711}\)
\(B=81.\left(\frac{3}{1}:\frac{5}{6}\right).\frac{158}{711}\)
\(B=81.\frac{18}{5}.\frac{158}{711}\)
\(B=\frac{1458}{5}.\frac{158}{711}=\frac{324}{5}\)
Vậy \(B=\frac{324}{5}\)
\(\left(x-\frac{2}{3}\right)^2=\frac{5}{6}\)
\(\Leftrightarrow x-\frac{2}{3}=\sqrt{\frac{5}{6}}\)
\(\Leftrightarrow x=\frac{4+\sqrt{30}}{6}\)
Bài làm:
Xét: \(\frac{1}{5^2}>\frac{1}{5.6}\) ; \(\frac{1}{6^2}>\frac{1}{6.7}\) ; ... ; \(\frac{1}{100^2}>\frac{1}{100.101}\)
=> \(A>\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{100.101}\)
\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{101}\)
\(=\frac{1}{5}-\frac{1}{101}=\frac{96}{505}>\frac{1}{6}\) (1)
Lại có: \(\frac{1}{5^2}< \frac{1}{4.5}\) ; \(\frac{1}{6^2}< \frac{1}{5.6}\) ; ... ; \(\frac{1}{100^2}< \frac{1}{99.100}\)
=> \(A< \frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)
\(=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{4}-\frac{1}{100}< \frac{1}{4}\) (2)
Từ (1) và (2) => \(\frac{1}{6}< A< \frac{1}{4}\)
\(a,\frac{15}{2}-\left(\frac{x}{2}-\frac{3}{4}\right)=\frac{5}{26}\)
\(\frac{x}{2}-\frac{3}{4}=\frac{15}{2}-\frac{5}{26}\)
\(\frac{x}{2}-\frac{3}{4}=39\)
\(\frac{x}{2}=39+\frac{3}{4}\)
\(\frac{x}{2}=\frac{159}{4}\)
\(\Rightarrow\frac{2.x}{4}=\frac{159}{4}\)
\(\Rightarrow2.x=159\)
\(\Rightarrow x=159:2=\frac{159}{2}\)