K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2015

a, \(\frac{16}{2^n}=2\Leftrightarrow2\cdot2^n=16\Leftrightarrow2^{n+1}=2^4\Leftrightarrow n+1=4\Rightarrow n=3\)

b,\(\frac{\left(-3\right)^n}{81}=-27\Leftrightarrow\left(-3\right)^n=-3^3.3^4\Leftrightarrow\left(-3\right)^n=\left(-3\right)^7\Rightarrow n=7\)

c,\(8^n:2^n=4\Leftrightarrow\left(2^3\right)^n:2^n=2^2\Leftrightarrow2^{3n}:2^{2n}=2^2\Leftrightarrow2^{3n-2n}=2^2\Leftrightarrow2^n=2^2\Leftrightarrow n=2\)

27 tháng 9 2016

câu 1.      \(\frac{16}{2^n}\)=2  =>2n=16x2=32

                    2n=25    =>    n=5

câu 2.\(\frac{\left(-3\right)^n}{81}\)=-27=3=>(-3)=81x33

                                                                   =(-3)4x(-3)3

                                                                   =(-3)7

câu 3.  8n:4n=4=>(8:4)n=4

                          2n=4 =22

                         =>n=2

26 tháng 6 2018

a)\(\left(\frac{-1}{3}\right)^3\cdot x=\frac{1}{81}\) \(< =>\frac{-1}{27}x=\frac{1}{81}\)\(< =>x=\frac{-1}{3}\)

28 tháng 9 2018

phân tích kết quả ra bạn nhé

8 tháng 3 2019

3. Tìm x biết: |15-|4.x||=2019

\(\Rightarrow\orbr{\begin{cases}15-\left|4x\right|=2019\\15-\left|4x\right|=-2019\end{cases}\Rightarrow\orbr{\begin{cases}\left|4x\right|=-2004\\\left|4x\right|=2034\end{cases}}}\)

vì \(4x\ge0\)\(\Rightarrow\)|4x|=2043\(\Rightarrow4x=2034\Rightarrow x=508,5\)

KL: x=508,5

Tính ra A là 2-(1/2)^2013. Phần còn lại thì quá dễ r 

(Để tính A từ dãy trên ta nhân 2 lên thành 2A. Rồi lấy 2A-A=A=...)

11 tháng 11 2018

\(A=1+\frac{1}{2}+\left(\frac{1}{2}\right)^2+..............+\left(\frac{1}{2}\right)^{2013}\)

\(\Rightarrow2A=2+1+\frac{1}{2}+.......+\left(\frac{1}{2}\right)^{2013}\Rightarrow2A-A=A=2-\left(\frac{1}{2}\right)^{2013}\)

\(VI:A+\left(\frac{1}{2}\right)^n=2\Rightarrow n=2013\)

25 tháng 8 2020

\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{n\left(n+1\right)}=\frac{49}{50}\)

\(\Rightarrow\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{n\left(n+1\right)}=\frac{49}{50}\)

\(\Rightarrow\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n}-\frac{1}{n+1}=\frac{49}{50}\)

\(\Rightarrow1-\frac{1}{n+1}=\frac{49}{50}\)

\(\Rightarrow\frac{1}{n+1}=\frac{1}{50}\)

\(\Rightarrow n+1=50\)

\(\Rightarrow n=49\)

\(\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+...+\frac{2}{\left(2n-1\right)\left(2n+1\right)}=\frac{50}{51}\)

\(\Rightarrow\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{\left(2n-1\right)\left(2n+1\right)}=\frac{50}{51}\)

\(\Rightarrow\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2n-1}-\frac{1}{2n+1}=\frac{50}{51}\)

\(\Rightarrow\frac{1}{1}-\frac{1}{2n+1}=\frac{50}{51}\)

\(\Rightarrow\frac{1}{2n+1}=\frac{1}{51}\)

\(\Rightarrow2n+1=51\)

\(\Rightarrow2n=50\)

\(\Rightarrow n=25\)

12 tháng 11 2015

3n+2 - 2n+2 +3n - 2n = 3n . 32 - 2n. 22 +3n -2n

                             = 3n(32+1) - (2n.22 +2n)

                             =3n . 10 - 2n .5

                             =3n.10 - 2n-1 .2 .5

                             = 3n.10 - 2n-1 .10

                             = 10(3n - 2n-1)

vì 10 chia hết cho 10 nên 10(3n-2n-1) chia hết cho 10

                         =>  3n+2 - 2n+2 +3n -2n chia hết cho 10

                           

12 tháng 11 2015

Ai làm nhanh nhất mình sẽ **** xin cảm ơn các bạn mình đang cần gấp

 

27 tháng 4 2018

\(1/\)

Để \(\frac{21n+4}{14n+3}\)là phân số tối giản

Suy ra: ƯCLN\(\left(21n+4;14n+3\right)=1\)

Gọi ƯCLN\(\left(21n+4;14n+3\right)=a\)

Ta có:

\(21n+4⋮a\)

\(\Rightarrow\left(21n+4\right).2=42n+8⋮a\)(1)

\(14n+3⋮a\)

\(\Rightarrow\left(14n+3\right).3=42n+9⋮a\)(2)

Từ (1) và (2) suy ra:

\((42n+9)-(42n+8)⋮a\)

\(\Rightarrow1⋮a\)

\(\Rightarrow a\inƯ\left(1\right)\)

\(\Rightarrow a=1\)hoặc\(a=-1\)

\(a\inƯCLN\left(1\right)\)\(\Rightarrow a=1\)

Vậy \(\frac{21n+4}{14n+3}\)là phân số tối giản

25 tháng 4 2018

\(2/\)

\(x^2+2x+2=x^2+x+x+1+1\)

\(=x\left(x+1\right)+\left(x+1\right)+1\)

\(=\left(x+1\right)\left(x+1\right)+1=\left(x+1^2\right)+1>0\)

Vậy đa thức \(x^2+2x+2\)không có nghiệm