Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án:
x=-6, x=1
Giải thích các bước giải:
$(x+1)(x+2)(x+3)(x+4) = 120\\
⟹ (x+1)(x+4)(x+2)(x+3) = 120\\
⟹ (x^2 +5x+4)( x^2+5x+6) = 120\\
\text{Đặt x2+5x=yx2+5x=y}\\
\Rightarrow (y +4)(y +6) = 120\\
⟹ y^2 +10y +24 = 120\\
⟹ y^2 +10y −96 = 0\\
⟹ y^2 +16x−6x−96 = 0\\
⟹ y(y +16)−6(y +16) = 0\\
\Rightarrow (y +16)(y −6) = 0\\
⟹ y = −16\quad và\quad y = 6
\text{Nếu }x^2+5x=6
\rightarrow x(x+6)−1(x+6) = 0
(x+6)(x−1) = 0
⟹ x = −6\quad và \quad x = 1
Hoặc\quad x^2+5=-16 \quad\text{Vô nghiệm do vế trái luôn > 0 với mọi x}$
Vì a,b,c,d \(\inℕ^∗\Rightarrow a+b+c< +b+c+d\Rightarrow\frac{a}{a+b+c}>\frac{a}{a+b+c+d}\)
Tương tự
\(\frac{b}{a+b+d}>\frac{b}{a+b+c+d}\)
\(\frac{c}{a+c+d}>\frac{c}{a+b+c+d}\)
\(\frac{d}{b+c+d}>\frac{d}{a+b+c+d}\)
\(\Rightarrow M>\frac{a+b+c+d}{a+b+c+d}=1\)
Vì a,b,c,d \(\inℕ^∗\)\(\Rightarrow a+b+c>a+b\Rightarrow\frac{a}{a+b+c}< \frac{a}{a+b}\)
Tương tự
\(\hept{\begin{cases}\frac{b}{a+b+d}< \frac{b}{a+b}\\\frac{c}{a+c+d}< \frac{c}{c+d}\\\frac{d}{b+c+d}< \frac{d}{a+b+c+d}\end{cases}}\)
\(\Rightarrow M< \frac{a+b}{a+b}+\frac{c+d}{c+d}=2\)
Vậy \(1< M< 2\)nên M không là số tự nhiên
gọi 4 số tự nhiên liên tiếp là a, a+1,a+2,a+3
tổng của 3 tự nhien liên tiếp là: a+a+1+a+2=3a+3=3.(a+1) chia hết cho 3
tổng của 4 số tự nhiên liên tiếp là: a+a+1+a+2+a+3=4a+6=4.(a+1)+2 ko chia hết cho 4
thanks bn những bn có thể tra lời giúp mình hết có được ko???