K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bạn kia làm sai r

Ta có đánh giá quen thuộc \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=\frac{a+b+c}{abc}\)

mà \(3abc\left(a+b+c\right)\le\left(ab+bc+ca\right)^2\)

do đó \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{a+b+c}{abc}=\frac{\left(a+b+c\right)^2}{abc\left(a+b+c\right)}\ge\frac{3\left(a+b+c\right)^2}{\left(ab+bc+ca\right)^2}\)

Phép chứng minh hoàn tất khi ta cm được

\(\frac{3\left(a+b+c\right)^2}{\left(ab+bc+ca\right)^2}\ge a^2+b^2+c^2\)

hay \(3\left(a+b+c\right)^2\ge\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)^2\)

Theo bđt AM-GM ta có

\(\left(a+b+c\right)^2=\left(a^2+b^2+c^2\right)+\left(ab+bc+ca\right)+\left(ab+bc+ca\right)\)

\(\ge3\sqrt[3]{\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)^2}\)

hay \(\left(a+b+c\right)^6\ge27\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)^2\)

mà a+b+c=3 nên \(\left(a+b+c\right)^6=81\left(a+b+c\right)^2\)

\(\Rightarrow3\left(a+b+c\right)^2\ge\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)^2\)

Vậy bđt được chứng minh

Dấu "=" xảy ra khi a=b=c=1

16 tháng 6 2020

Xét BĐT phụ \(\frac{1}{a^2}+4a\ge a^2+4\Leftrightarrow\frac{\left(a-1\right)^2\left(1+2a-a^2\right)}{a^2}\ge0\)

Đến đây, ta đưa điều phải chứng minh về dạng \(\frac{\left(a-1\right)^2\left(1+2a-a^2\right)}{a^2}+\frac{\left(b-1\right)^2\left(1+2b-b^2\right)}{b^2}+\frac{\left(c-1\right)^2\left(1+2c-c^2\right)}{c^2}\ge0\)(*)

Không mất tính tổng quát, giả sử \(a\ge b\ge c\)

Xét hai trường hợp:

Trường hợp 1: \(a\le1+\sqrt{2}\Rightarrow c\le b\le a\le1+\sqrt{2}\)

Khi đó thì \(1+2a-a^2\ge0;1+2b-b^2\ge0;1+2c-c^2\ge0\)dẫn đến (*) đúng

Trường hợp 2: \(a>1+\sqrt{2}\Rightarrow b+c=3-a< 3-\left(1+\sqrt{2}\right)=2-\sqrt{2}< \frac{2}{3}\)

\(\Rightarrow bc\le\frac{\left(b+c\right)^2}{4}< \frac{\frac{4}{9}}{4}=\frac{1}{9}\)

Mà a,b,c dương nên \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}>\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{2}{bc}>18>\left(a+b+c\right)^2>a^2+b^2+c^2\)

Vậy bất đẳng thức được chứng minh

Đẳng thức xảy ra khi a = b = c = 1

Sửa đề:  Cho a, b, c là các số thực dương thỏa mãn điều kiện abc=1. Chứng minh rằng

\(\frac{1}{ab+b+2}+\frac{1}{bc+c+2}+\frac{1}{ca+a+2}\le\frac{3}{4}\)

Áp dụng bđt Cauchy-Schwarz ta có:

\(\frac{1}{ab+b+2}=\frac{1}{ab+1+b+1}\le\frac{1}{4}\left(\frac{1}{ab+1}+\frac{1}{b+1}\right)\) \(=\frac{1}{4}\left(\frac{abc}{ab\left(1+c\right)}+\frac{1}{b+1}\right)=\frac{1}{4}\left(\frac{c}{1+c}+\frac{1}{b+1}\right)\)

Tương tự \(\frac{1}{bc+c+2}\le\frac{1}{4}\left(\frac{a}{a+1}+\frac{1}{c+1}\right)\)

          \(\frac{1}{ca+a+2}\le\frac{1}{4}\left(\frac{b}{b+1}+\frac{1}{a+1}\right)\)

Cộng từng vế các bđt trên ta được

\(VT\le\frac{1}{4}\left(\frac{a+1}{a+1}+\frac{b+1}{b+1}+\frac{c+1}{c+1}\right)=\frac{3}{4}\)

Vậy bđt được chứng minh

Dấu "=" xảy ra khi a=b=c=1

4 tháng 11 2019

CM BĐT : \(\left(x^2+y^2+z^2\right)^2\ge3\left(x^3y+y^3z+z^3x\right)\)   ( * )

\(\frac{a}{ab+1}=\frac{a\left(ab+1\right)-a^2b}{ab+1}=a-\frac{a^2b}{ab+1}\)

TT ....

Áp dụng BĐT ( * ) với x = \(\sqrt{a}\); y = \(\sqrt{b}\); z = \(\sqrt{c}\) vào bài toán, ta có :

\(\frac{a}{ab+1}+\frac{b}{bc+1}+\frac{c}{ca+1}=a+b+c-\frac{a^2b}{ab+1}-\frac{b^2c}{bc+1}-\frac{c^2a}{ac+1}\)

\(\ge3-\frac{a^2b}{2\sqrt{ab}}-\frac{b^2c}{2\sqrt{bc}}-\frac{c^2a}{2\sqrt{ac}}=3-\frac{\sqrt{a^3b}+\sqrt{b^3c}+\sqrt{c^3a}}{2}\ge3-\frac{\frac{\left(a+b+c\right)^2}{3}}{2}=\frac{3}{2}\)

Dấu " = " xảy ra \(\Leftrightarrow a=b=c=1\)

19 tháng 12 2018

Áp dụng BĐT AM-GM: \(1+b^2\ge2b\)

\(\Rightarrow\frac{a}{1+b^2}=a-\frac{ab^2}{1+b^2}\ge a-\frac{ab^2}{2b}=a-\frac{ab}{2}\)

Tương tự: \(\frac{b}{1+c^2}\ge b-\frac{bc}{2};\frac{c}{1+a^2}\ge c-\frac{ca}{2}\)

Cộng vế với vế 3 BĐT trên ta được:  \(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge\left(a+b+c\right)-\frac{ab+bc+ca}{2}=3-\frac{ab+bc+ca}{2}\)

Mà \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}\) 

Nên \(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge3-\frac{\left(a+b+c\right)^2}{6}=3-\frac{9}{6}=\frac{3}{2}\)(đpcm).

Dấu "=" xảy ra <=> a=b=c=1.

10 tháng 2 2020

Cho a,b,c >0 CMR - Bất đẳng thức và cực trị - Diễn đàn Toán học

P/s: Em nhớ bài này có lời giải bằng Dirichlet thì phải.

10 tháng 2 2020

Là sao ạ

14 tháng 4 2020

1+1.2=?

14 tháng 4 2020

cho mình hỏi đề đúng không vậy

22 tháng 5 2017

\(a=b=c=1\)

22 tháng 5 2017

Dấu bằng xảy ra thì ai mà chẳng biết