Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(-4x^2+4x-12< 0
\)
\(\Leftrightarrow-\left(4x^2-4x+1\right)-11< 0\)
\(\Leftrightarrow-\left(2x-1\right)^2-11< 0\left(đpcm\right)\)
Ta có: \(-4x^2+4x-12=-\left(2x\right)^2+4x-1-11\)=\(\left[-\left(2x\right)^2+4x-1\right]-11\)
\(=-\left(2x-1\right)^2-11\)
Vì \(\left(2x-1^2\right)>0\)\(\forall x\)
\(-\left(2x-1\right)^2< 0\)\(\forall x\)
\(-\left(2x-1\right)^2-11< -11< 0\)\(\forall x\)
hay \(-4x^2+4x-12< 0\)\(\forall x\)
\(1)\)
\(a)\)\(A=5-8x-x^2\)
\(A=-\left(x^2+8x+16\right)+21\)
\(A=-\left(x+4\right)^2+21\le21\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(-\left(x+4\right)^2=0\)
\(\Leftrightarrow\)\(x=-4\)
Vậy GTLN của \(A\) là \(21\) khi \(x=-4\)
\(b)\)\(B=5-x^2+2x-4y^2-4y\)
\(-B=\left(x^2-2x+1\right)+\left(4y^2+4y+1\right)-7\)
\(-B=\left(x-1\right)^2+\left(2y+1\right)^2-7\ge-7\)
\(B=-\left(x-1\right)^2-\left(2y+1\right)^2+7\le7\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}-\left(x-1\right)^2=0\\-\left(2y+1\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=\frac{-1}{2}\end{cases}}}\)
Vậy GTLN của \(B\) là \(7\) khi \(x=1\) và \(y=\frac{-1}{2}\)
Chúc bạn học tốt ~
\(2)\)\(A=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)
\(2A=2\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)
\(2A=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)
\(2A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)
\(2A=\left(3^4-1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)
\(............\)
\(2A=\left(3^{64}-1\right)\left(3^{64}+1\right)\)
\(2A=3^{128}-1\)
\(A=\frac{2^{128}-1}{3}\)
Chúc bạn học tốt ~
1) x^2 + xy + y^2 + 1 > 0 với mọi x, y;
ta có x^2+xy+y^2+1=(x^2+2x.y/2+y^2/4)+-y^2/4+y^2+1=(x+y/2)^2+3y^2/4+1
ta có (x+y/2)^2>=0 với mọi x, y
3y^2/4>=0 với mọi y
=>(x+y/2)^2+3y^2/4+1>0 với mọi x, y
\(x^2+4y^2+z^2-2x-6z+8y+15\)
\(=\left(x^2-2x+1\right)+\left(4y^2+8y+4\right)+\left(z^2-6z+9\right)+1\)
\(=\left(x-1\right)^2+4\left(y+1\right)^2+\left(z-3\right)^2+1>0\forall x;y\)
\(x^2+5y^2+2x-4xy-10y+14\)
\(=\left(x^2-4xy+4y^2\right)+\left(2x-4y\right)+1+y^2-6y+9+4\)
\(=\left(x-2y\right)^2+2\left(x-2y\right)+1+\left(y-3\right)^2+4\)
\(=\left(x-2y+1\right)^2+\left(y-3\right)^2+4>0\forall x;y\)
Chúc bạn học tốt.
\(-9x^2+12x-15=\left(-11\right)-\left(9x^2-12x+4\right)=\left(-11\right)-\left(3x-2\right)^2\le-11< 0\)
\(-5-\left(x-1\right).\left(x+2\right)=-5-\left(x^2+x-2\right)=-\left(x^2+x+3\right)=-\left(\left(x+\frac{1}{2}\right)^2+\frac{11}{4}\right)\le-\frac{11}{4}< 0\)
\(x^2+x+2\)
\(=x^2+2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{7}{4}\)
\(=\left(x+\frac{1}{2}\right)^2+\frac{7}{4}\ge\frac{7}{4}\forall x\)
\(\Rightarrow x^2+x+2>0\)
Ta có :
\(X^2+X+2=\left(X+\frac{1}{2}\right)^2+\frac{7}{4}>0\forall X\)
( Do \(\left(X+\frac{1}{2}\right)^2\ge0\forall X\)=> \(\left(X+\frac{1}{2}\right)^2+\frac{7}{4}>0\forall X\))
\(=x^3-3x^2+3x-1-\left(x^3+x^2+x-x^2-x-1\right)-3x+3x^2\)
\(=x^3-3x^2+3x-1-\left(x^3-1\right)-3x+3x^2\)
\(=x^3-3x^2+3x-1-x^3+1-3x+3x^2\)
\(=0\)
Vậy giá trị biểu thức không phụ thuộc vào biến x
( x - 1 )3 - ( x - 1 )( x2 + x + 1 ) - 3( 1 - x )x
= x3 - 3x2 + 3x - 1 - ( x3 - 1 ) - 3x + 3x2
= x3 - 3x2 + 3x - 1 - x3 + 1 - 3x + 3x2
= 0
Vậy biểu thức không phụ thuộc vào biến ( đpcm )
sửa +1 thành -1
Ta có : -x2 + x - 1 = -( x2 - x + 1/4 ) - 3/4 = -( x - 1/2 )2 - 3/4 ≤ -3/4 < 0 ∀ x
vậy ta có đpcm
Ta có :
-x2 + x + 1 = -( x - 1/2 )2 - 5/4 < 0 , với mọi giá trị của x