Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+4y^2+z^2-2x-6z+8y+15\)
\(=\left(x^2-2x+1\right)+\left(4y^2+8y+4\right)+\left(z^2-6z+9\right)+1\)
\(=\left(x-1\right)^2+4\left(y+1\right)^2+\left(z-3\right)^2+1>0\forall x;y\)
\(x^2+5y^2+2x-4xy-10y+14\)
\(=\left(x^2-4xy+4y^2\right)+\left(2x-4y\right)+1+y^2-6y+9+4\)
\(=\left(x-2y\right)^2+2\left(x-2y\right)+1+\left(y-3\right)^2+4\)
\(=\left(x-2y+1\right)^2+\left(y-3\right)^2+4>0\forall x;y\)
Chúc bạn học tốt.
Câu 9.
a) Ta có: \(\left(a-1\right)^2\ge0\)(điều hiển nhiên)
\(\Leftrightarrow a^2-2a+1\ge0\)
\(\Leftrightarrow a^2+2a+1\ge4a\)
\(\Leftrightarrow\left(a+1\right)^2\ge4a\left(đpcm\right)\)
b) Áp dụng BĐT Cauchy cho 2 số không âm:
\(a+1\ge2\sqrt{a}\)
\(b+1\ge2\sqrt{b}\)
\(c+1\ge2\sqrt{c}\)
\(\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge8\sqrt{abc}=8\)(Vì abc = 1)
Câu 10.
a) Ta có: \(-\left(a-b\right)^2\le0\)(điều hiển nhiên)
\(\Leftrightarrow-a^2+2ab-b^2\le0\)
\(\Leftrightarrow a^2+2ab+b^2\le2a^2+2b^2\)
\(\Leftrightarrow\left(a+b\right)^2\le2\left(a^2+b^2\right)\)
b) \(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\)
Có: \(2ab\le a^2+b^2;2bc\le b^2+c^2;2ac\le a^2+c^2\)(BĐT Cauchy)
\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ac\le3\left(a^2+b^2+c^2\right)\)
Vậy \(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\)
\(1)\)
\(a)\)\(A=5-8x-x^2\)
\(A=-\left(x^2+8x+16\right)+21\)
\(A=-\left(x+4\right)^2+21\le21\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(-\left(x+4\right)^2=0\)
\(\Leftrightarrow\)\(x=-4\)
Vậy GTLN của \(A\) là \(21\) khi \(x=-4\)
\(b)\)\(B=5-x^2+2x-4y^2-4y\)
\(-B=\left(x^2-2x+1\right)+\left(4y^2+4y+1\right)-7\)
\(-B=\left(x-1\right)^2+\left(2y+1\right)^2-7\ge-7\)
\(B=-\left(x-1\right)^2-\left(2y+1\right)^2+7\le7\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}-\left(x-1\right)^2=0\\-\left(2y+1\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=\frac{-1}{2}\end{cases}}}\)
Vậy GTLN của \(B\) là \(7\) khi \(x=1\) và \(y=\frac{-1}{2}\)
Chúc bạn học tốt ~
\(2)\)\(A=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)
\(2A=2\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)
\(2A=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)
\(2A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)
\(2A=\left(3^4-1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)
\(............\)
\(2A=\left(3^{64}-1\right)\left(3^{64}+1\right)\)
\(2A=3^{128}-1\)
\(A=\frac{2^{128}-1}{3}\)
Chúc bạn học tốt ~
\(b, 8(a^3+b^3+c^3)≥(a+b)^3 + (b+c)^3 + (c+a)^3 \) với \(a,b,c>0\)
Ta biến đổi thành: \(4\left(a^3+b^3\right)-\left(a+b\right)^3+4\left(b^3+c^3\right)-\left(b+c\right)^3+4\left(c^3+a^3\right)-\left(c+a\right)^3\ge0\)
Xét: \(4\left(a^3+b^3\right)-\left(a+b\right)^3\)
\(=\left(a+b\right)\left[4\left(a^2-ab+b^2\right)-\left(a+b\right)^2\right]\)
\(=3\left(a+b\right)\left(a-b\right)^2\ge0\)
Tương tự như trên với: \(4\left(b^3+c^3\right)-\left(b+c\right)^3\) và \(4\left(c^3+a^3\right)-\left(c+a\right)^3\)
\(\RightarrowĐpcm\)(Viết cái đề ra ý)
Đẳng thức xảy ra \(\Leftrightarrow a=b=c\)
Câu 1
5x2 + 10y2 - 6xy - 4x - 2y + 3
= ( x2 - 6xy + 9y2 ) + ( 4x2 - 4x + 1 ) + ( y2 - 2y + 1 ) + 1
= ( x - 3y )2 + ( 2x - 1 )2 + ( y - 1 )2 + 1 ≥ 1 > 0 ∀ x ( đpcm )
Câu 2
a) A = 2011.2013 = ( 2012 - 1 )( 2012 + 1 ) = 20122 - 1 < 20122
=> A < B
B = 3128 - 1
= ( 364 - 1 )( 364 + 1 )
= ( 332 - 1 )( 332 + 1 )( 364 + 1 )
= ( 316 - 1 )( 316 + 1 )( 332 + 1 )( 364 + 1 )
= ( 34 - 1 )( 34 + 1 )( 316 + 1 )( 332 + 1 )( 364 + 1 )
= ( 32 - 1 )( 32 + 1 )( 34 + 1 )( 316 + 1 )( 332 + 1 )( 364 + 1 )
= ( 3 - 1 )( 3 + 1 )( 32 + 1 )( 34 + 1 )( 316 + 1 )( 332 + 1 )( 364 + 1 )
= 8( 32 + 1 )( 34 + 1 )( 316 + 1 )( 332 + 1 )( 364 + 1 ) > 4( 32 + 1 )( 34 + 1 )( 316 + 1 )( 332 + 1 )( 364 + 1 )
=> B > A
Có ab + bc + ca = 0
=> 2ab + 2bc + 2ca = 0
Lại có a2 + b2 + c2 = 0 (1)
=> a2 + 2ab + b2 + 2bc + c2 + 2ca = 0
=> (a + b + c)2 = 0
=> a + b + c = 0 (2)
Từ (1) và (2) => a = b = c (đpcm)
Ta có: \(\hept{\begin{cases}a^2+b^2+c^2=0\\ab+bc+ca=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}2a^2+2b^2+2c^2=0\\2ab+2bc+2ca=0\end{cases}}\)
\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
Vì \(\hept{\begin{cases}\left(a-b\right)^2\ge0;\forall a,b,c\\\left(b-c\right)^2\ge0;\forall a,b,c\\\left(c-a\right)^2\ge0;\forall a,b,c\end{cases}}\)\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0;\forall a,b,c\)
Do đó \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\)
\(\Leftrightarrow a=b=c\left(đpcm\right)\)
a, ta có : (a+b)3- 3ab(a+b)=a3+3a2b+3ab2+b3-3a2b-3ab2
=a3+b3(đpcm)
a)\(\left(a+b\right)^3=a^3+3a^2b+3ab^2+b^3=a^3+b^3+3ab\left(a+b\right)\)
b)\(a^3+b^3+c^3-3abc=\left(a+b\right)\cdot\left(a^2-ab+b^2\right)+c^3-3abc\)
=\(\left(a+b\right)\cdot\left(a^2-ab+b^2\right)+c\left(a^2-ab+b^2\right)-2abc-ca^2-cb^2\)
=\(\left(a+b+c\right)\cdot\left(a^2-ab+b^2\right)-\left(abc+b^2c+bc^2+ca^2+abc+c^2a\right)+c^3+ac^2+bc^2\)
=\(\left(a+b+c\right)\cdot\left(a^2-ab+b^2\right)-\left(a+b+c\right)\cdot\left(bc+ca\right)+c^2\cdot\left(a+b+c\right)\)
=\(\left(a+b+c\right)\cdot\left(a^2+b^2+c^2-ab-bc-ca\right)\)
Chúc bạn học tốt!
a, a^3 + b^3=(a + b)^3 - 3a2b - 3ab2=(a + b)^3 - 3ab(a + b)
b, a^3 + b^3 + c^3 - 3abc= (a + b)^3 + c3 - 3ab(a + b)-3abc
=(a + b + c)\([\)(a + b)2- (a + b)c +c2\(]\)- 3ab(a + b + c)
=(a + b + c)(a2 + 2ab + b2 - ac - bc + c2 - 3ab)
=(a + b + c)(a2 + b2 + c2 - ab - bc- ca)
a2 + b2 + 3 > ab + a + b
<=> 2a2 + 2b2 + 6 > 2ab + 2a + 2b
<=> 2a2 + 2b2 + 6 - 2ab - 2a - 2b > 0
<=> ( a2 - 2ab + b2 ) + ( a2 - 2a + 1 ) + ( b2 - 2b + 1 ) + 4 > 0
<=> ( a - b )2 + ( a - 1 )2 + ( b - 1 )2 + 4 > 0 ( đúng ∀ a,b )
Vậy bđt ban đầu được chứng minh
quãng đường từ nhà Giang đến chợ huyện gồm một đoạn lên dốc .Giang đi từ nhà đến chợ huyện hết 2h 45 phút.Vận tốc khi lên dốc là 8 km/giờ,vận tốc khi xuống dốc là 12km/giờ.Thời gian khi lên dốc hơn thời gian khi xuống dốc là 0,25 giờ.Tính quãng đường từ nhà Giag đến chợ huyện