Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1
6 tập hợp con
bài 2
{1};{2};{3};{1;2};{1;3};{2;3}
a){1;2};{1;3};{2;3}
b)có 0
c)có 0
d)6
Bài 1 bạn kia trả lời sai nhé. Có 7 tập hợp con. Tập hợp con thứ 7 chính là tập hợp rỗng. Vì tập rỗng là tập hợp con của mọi tập hợp bạn nhé
2
a ){1} ; {2} ; {a} ;{b}
b) {1;2} ; { 1; a} ; { 1; b} ; { 2;a } ; {2 ;b} ; { a;b}
c) Tập hợp { a,b,c} có là tập hợp con của A
3
B có số tập con là :
2 x2 x 2 = 8 tập hợp con
Theo thứ tự nhé: 4, 3, 2, 1
4 + 3 + 2 + 1 = 10
Hội con 🐄 chúc bạn học tốt!!!
c2:21 phần tử
c3:39 phần tử
c5:504 phần tử
c7:3 tập hợp
c8:12 số
c9:9 số
c10:6;8;10
Cho tập hợp A = {4; 5; 6; 8; 9} và tập hợp B = {7; 8}. Số các số có hai chữ số có dạng ab, với a ∈ A và b ∈ B là ?
a) {a; 1; 2} ; {a; 2; 3} ; { b; 1; 3}
b) có rỗng; {a} ; {b}; {a; b} vậy có tổng cộng là 4 tập hợp con của A
Có 4 tập con của A có 3 phần tử.
Có 1 tập con của A có 4 phần tử.
Số tập con của tập A gồm n phần tử là 2^n
Thật vậy, bằng quy nạp ta có :
Với n=0, tập rỗng có 2^0=1 tập con. Đúng.
Với n=1, có 2^1 = 2 tập con là rỗng và chính nó. Đúng.
Giả sử công thức đúng với n=k. Tức là số tập con của tập hợp gồm k phần tử là 2^k
Ta phải chứng minh công thức đúng với k+1.
Ngoài 2^k tập con vốn có, thêm cho mỗi tập cũ phần tử thứ k + 1 thì được một tập con mới. Vậy ta được 2^k tập con mới. Tổng số tập con của tập hợp gồm k + 1 phần tử (tức tổng số tập con của tập gồm 2^k phần tử và tập con mới tạo thành) là : 2^k + 2^k = 2^k . 2 = 2 ^(k+1). Đúng
Vậy số tập con của tập A gồm n phần tử là 2^n
=> bài của bạn : a) 2^3=8
b) 2^4= 16