K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2020

a)Xét tam giác ABH có: HBA + BAH + BHA = 180 (Tổng ba góc trong một tam giác)

\(\implies\) 60 + BAH + 90 =180

\(\implies\) BAH = 30

b) Xét tam giác AHI và tam giác ADI có :

  AH = AD (gt)

  AI chung 

  HI=DI (gt)

\(\implies\) tam giác AHI = tam giác ADI (c-c-c)

\(\implies\) AIH = AID (hai góc tương ứng)

Mà AIH + AID = 180 (hai góc kề bù ) (2)

\(\implies\) AIH + AIH =180

\(\implies\) 2.AIH = 180

\(\implies\) AIH = 90(1)

Từ (1);(2) \(\implies\) AIH = AID = 90

\(\implies\) AI vuông góc với HD 

c)Ta có:HAI = DAI (tam giác AHI = tam giác ADI)

Hay  HAK = DAK 

Xét tam giác AHK và tam giác ADK có :

 AH = AD (gt)

 AK chung

HAK = DAK (cmt)

\(\implies\) tam giác  AHK = tam giác ADK (c-g-c)

+)Ta có:BAH + HAC = BAC

\(\implies\) BAH + HAC = 90

\(\implies\) 30 +HAC =90

\(\implies\) HAC = 60 

Hay HAD =60

\(\implies\) HAK + DAK =60

Mà : HAK = DAK (cmt)

\(\implies\) HAK + HAK =60

\(\implies\) 2 HAK = 60

\(\implies\) HAK = 30

Xét tam giác vuông BHA và tam giác giác vuông KHA có:

 HA chung

 BAH = KAH =30 (cmt)

\(\implies\) tam giác vuông BHA = tam giác vuông KHA (cạnh góc vuông - góc nhọn kề)

\(\implies\) BH = KH (hai cạnh tương ứng)

\(\implies\) H là trung điểm của BK

12 tháng 5 2016

Bạn tự vẽ hình nhaleu

a.

BD = BA (gt)

=> Tam giác BDA cân tại A

=> BAD = BDA

b.

Tam giác HDA vuông tại H có: HAD + BDA = 90

                                       Ta có: KAD + BAD = 90 (2 góc phụ nhau)

mà BAD = BDA (theo câu a)

=> HAD = KAD

=> AD là tia phân giác của HAK

c.

Xét tam giác HAD vuông tại H và tam giác KAD vuông tại K có:

AD là cạnh chung

DAH = DAK (AD là tia phân giác của HAK)

=> Tam giác HAD = Tam giác KAD (cạnh huyền - góc nhọn)

=> AK = AH (2 cạnh tương ứng)

d.

Tam giác ABH có: AB < BH + AH (bất đẳng thức tam giác)

Tam giác ACH có: AC < CH + AH (bất đẳng thức tam giác)

=> AB + AC < BH + CH + AH + AH

=> AB + AC < BC + 2AH

Chúc bạn học tốtok

 

 

 

12 tháng 5 2016

A B C H D

a/ Vì AB=BD nên tam giác ABD cân tại B 

Mà Góc BAD và góc ADB là 2 góc ứng với cạnh đáy nên 2 góc đó bằng nhau.

 

8 tháng 5 2016

a)  Vì BA = BD => tam giác BAD cân tại B => góc BDA = góc DAB

b) Trong tam giác vuông ADH có: góc BDA + DAH = 90o

Mà góc CAD + DAB = CAB = 90o

=> góc BDA + DAH = góc CAD + DAB  mà góc BDA = góc DAB 

=> góc DAH = CAD => AD là phân giác của HAC

c) Xét tam giác vuông AKD và AHD có: Chung cạnh huyền AD; góc DAH = DAK

=> tam giác AKD = AHD ( cạnh huyền - góc nhọn)

=> AK = AH ( 2 cạnh tương ứng)

dCó DC > KC (tam giác KDC vuông, DC là cạnh huyền) 
=> DC + BD+ AK > KC + BD + AK 
=> BC +AK > AC + BD 
=> AB + AC < BC + AH (vì AK=AH, AB = AD) 

A B C H D

8 tháng 5 2016

A B D H C

a.xét tgiac ABD có AB=BD(gt)

nên theo định nghĩa ta có tgiac ABD cân tại B nên => góc BAD=góc BDA

8 tháng 5 2016

Bạn tự vẽ hình nhaleu

a.

BA = BD (gt)

=> Tam giác BAD cân tại B

=> BAD = BDA

b.

Tam giác HAD vuông tại H có: HAD + BDA = 90

Ta có: KAD + BAD = 90 (2 góc phụ nhau)

mà BAD = BDA (theo câu a)

=> HAD = KAD

=> AD là tia phân giác của HAK

c.

Xét tam giác HAD vuông tại H và tam giác KAD vuông tại K có:

HAD = KAD (AD là tia phân giác của HAK)

AD là cạnh chung

=> Tam giác HAD = Tam giác KAD (cạnh huyền - góc nhọn)

=> AH = AK (2 cạnh tương ứng)

Chúc bạn học tốtok

 

 

Bài 1 : Cho tam giác ABC có AB = 3cm , AC= 4cm và BC = 5cm.a) Tam giác ABC là tam giác gì?Vì sao?b)Trên cạnh BC lấy điểm D sao cho BA=BD.Từ D vẽ Dx vuông góc với BC và cắt AC tại H.Chứng minh BH là tia phân giác góc ABC.c)Vẽ trung tuyến AM.Chứng minh tam giác AMC cânBài 2 : Cho tam giác ABC vuông tại A có đường cao AH.Biết AH= 4cm,HB= 2cm,HC= 8cma) Tính độ dài các cạnh AB,ACb) Chứng minh góc B > góc CBài 3 : Cho góc xOy có...
Đọc tiếp

Bài 1 : Cho tam giác ABC có AB = 3cm , AC= 4cm và BC = 5cm.

a) Tam giác ABC là tam giác gì?Vì sao?

b)Trên cạnh BC lấy điểm D sao cho BA=BD.Từ D vẽ Dx vuông góc với BC và cắt AC tại H.Chứng minh BH là tia phân giác góc ABC.

c)Vẽ trung tuyến AM.Chứng minh tam giác AMC cân

Bài 2 : Cho tam giác ABC vuông tại A có đường cao AH.Biết AH= 4cm,HB= 2cm,HC= 8cm

a) Tính độ dài các cạnh AB,AC

b) Chứng minh góc B > góc C

Bài 3 : Cho góc xOy có Oz là tia phân giác,M là điểm bất kì thuộc tia Oz.Qua M kẻ đường thẳng a vuông góc với Ox tại A cắt Oy tại C và vẽ đường thẳng b vuông góc với Oy tại B cắt tia Ox tại D.

a) Chứng minh tam giác AOM = tam giác BOM từ đó suy ra OM là đường trung trực của đoạn thẳng AB

b) Tam giác DMC là tam giác gì?Vì sao?

c) Chứng minh DM + AM < AC

Bài 4 : Cho tam giác ABC vuông tại C có góc A= 60 độ,phân giác của góc BAC cắt BC tại E.Kẻ EK vuông góc AB tại K (K thuộc A).Kẻ BD vuông góc AE tại D (D thuộc AE).Chứng minh

a) Tam giác ACE = tam giác AKE

b) AE là đường trung trực của đoạn thẳng CK

c) KA = KB

d) EB > EC

Bài 5 : Cho tam giác ABC vuông tại A,đường cao AH.Trên cạnh BC lấy điểm D sao cho BD=BA.

a) Chứng minh góc BAD = góc BDA

b) Chứng minh AD là tia phân giác của góc HAC

c) Vẽ DK vuông góc AC.Chứng minh AK = AH

d) Chứng minh AB + AC < BC + AH

Bài 6 : Cho tam giác ABC có AB = 6cm, AC = 8cm, BC= 10cm.Gọi K là trung điểm của đoạn thẳng BC,đường trung trực của đoạn thẳng BC cắt cạnh AC tại M. Gọi D là hình chiếu vuông góc của C trên đường thẳng BM.Chứng minh rằng :

a) Tam giác ABC vuông tại A 

b) AB = DC

c) Ba đường thẳng AB , MK ,CD cùng đi qua một điểm

Bài 7 : Cho tam giác ABC vuông tại A có AB < AC. Trên cạnh huyền BC lấy điểm K sao cho CK = CA.Vẽ CM vuông góc AK tại M.Vẽ AD vuông góc BC tại D.AD cắt CM tại H.Chứng minh: 

a) Tam giác MCK = tam giác MCA 

b) HK // AB

c) HD < HA

6
29 tháng 4 2019

1
B A H C M D

a) Xét \(\Delta\)ABC:AB2+AC2=9+16=25=BC2=>\(\Delta\)ABC vuông tại A

b) Xét \(\Delta\)ABH và\(\Delta\)DBH:

                  BAH=BDH=90

                  BH chung

                  AB=DB

=>\(\Delta\)ABH=\(\Delta\)DBH(cạnh huyền-cạnh góc vuông)=>ABH=DBH=>BH là tia phân giác góc ABC

c) Áp dụng Định lý sau:"trong một tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền"cho tam giác vuông ABC, ta có:AM=1/2BC=CM

Suy ra \(\Delta\)AMC cân tại M

29 tháng 4 2019

2.

C B A H

a) Áp dụng Định lý Pythagoras cho tam giác vuông ABH, ta có:

AB2=BH2+AH2=22+42=>AB=\(\sqrt{20}\)cm

Áp dụng Định lý Pythagoras cho tam giác vuông ACH, ta có:

AC2=AH2+CH2=42+82=>AC=\(\sqrt{80}\)cm

b) Xét \(\Delta\)ABC:AB<AC(Suy ra trực tiếp từ kết quả câu a)

Suy ra: B>C (Định lý về cạnh và góc đối diện trong tam giác)

Bài làm

~ Tự vẽ hình, đó mik lm = đt nên k vẽ đc hình ~

a) Xét ∆BOA và ∆COK có: 

OA = OK ( GT )

GÓC BOA = GÓC COK ( HAI GÓC ĐỐI )

OB = OC ( O LÀ TRUNG ĐIỂN BC )

=> ∆BOA = ∆COK ( c.g.c )

=> AB = KC ( hai cạnh tương ứng )

=> Góc ABC = GÓC KCB ( HAI GÓC TƯƠNG ỨNG )

MÀ hai góc này ở vị trí số le trong.

=> AB // CK

Mà BA  |  AC 

=> CK  |  AC

Xét ∆ABC và ∆CKA có:

AB = CK ( cmt )

Góc BAC = góc KCA ( đó AB và CK cùng vuông góc với AC )

Cạnh AC chung.

=> ∆ABC = ∆CKA. ( c.g.c )

Bài alfm

Vì tâm giác ABC = tâm giác AKC 

=> BC = AK.

Mà AO là trung điểm AK.

=> AO = 1/2 AK

Hay AO = 1/2BC