Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(BD=AB+AD=4+5=9\left(cm\right)\)
\(\Delta ABC\) và \(\Delta CBD\) có:
\(\frac{AB}{BC}=\frac{BC}{BD}\left(=\frac{2}{3}\right)\)
Góc B chung
\(\Rightarrow\Delta ABC\infty\Delta CBD\left(c.g.c\right)\Rightarrow\hept{\begin{cases}\widehat{ACB}=\widehat{D}\\\frac{AB}{CB}=\frac{AC}{CD}\left(1\right)\end{cases}}\)
b, Từ (1) thay số vào: \(\frac{4}{6}=\frac{5}{CD}\Rightarrow CD=7,5\left(cm\right)\)
c, \(\widehat{BAC}=\widehat{D}+\widehat{ACD}=2\widehat{D}=2\widehat{ACB}\)
Ko bt vẽ hình ở đây ntn Thông cảm 🙏🙏
Cách vẽ : Vẽ sao cho cân tại B và C và B ; C là 2 góc trong cùng phía , nối A với C
Giải:
a) Vì AB//DC ( gt)
=> BAC = ACD ( so le trong )
Mà AC là pg BCD
=> BCA = ACD
Mà BAC = ACD (cmt)
=> BCA = BAC
=> tam giác BAC cân tại B
B)
Giải :
Vì AH vuông góc với DC
=> BHD = 90 độ
Vì AF vuông góc với DC
=> AFC = 90 độ
=> AFC= BHD = 90 độ
=> AF// BH(1)
Vì AB// DC ( gt)
=> AB//FC (2)
Từ (1) và (2)=> AB = AF = FH = HB = 5cm ( Vì AF = 5cm) tính chất của hình thang
Vì tam giác ABC cân tại B ( cm ở ý a)
=> AB = BC = 5cm
Áp dụng định lý Py- ta - go ta có :
BC2= BG2+GC2
GC2=√25-- BG2
Tớ phân vân không biết đáp án của tớ có đúng không Nếu sai thông cảm nhé
Hình tự vẽ nhá
Vì tam giác ABC cân tại A nên:
\(\widehat{B}=\widehat{C}\)
Mà \(\widehat{B}=\widehat{DME}\)
Suy ra: \(\widehat{C}=\widehat{DME}\)
Mặt khác: \(\widehat{BME}=\widehat{BMD}+\widehat{DME}=\widehat{MEC}+\widehat{C}\)(góc ngoài của tam giác MEC)
Suy ra: \(\widehat{BMD}=\widehat{MEC}\)
Xét tam giác BMD và tam giác CEM có:
+ \(\widehat{B}=\widehat{C}\)(gt)
+\(\widehat{BMD}=\widehat{MEC}\)(cmt)
Do đó: \(\Delta BMD~\Delta CEM\)(g.g)
Suy ra: \(\frac{BM}{CE}=\frac{BD}{CM}\Leftrightarrow BM\cdot CM=CE\cdot BD\)
Vì BM,CM không đổi (vì BM=CM) nên BM.CM không đổi
Vậy BD.CE không đổi
ý c nhé, a và b dễ tự làm nhé:
https://vn.answers.yahoo.com/question/index?qid=20110323013140AAJ5GpF