Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\Delta ABM\)và \(\Delta ACM\)
+ AB = AC(gt)
+ BM = CM(gt)
+ Chung AM
Vậy \(\Delta ABM=\Delta ACM\left(c.c.c\right)\)
Suy ra \(\widehat{ABC}=\widehat{ACB}\)(hai góc tương ứng)
=> \(180^0-\widehat{ABC}=180^0-\widehat{ACB}\)
\(\Rightarrow\widehat{ABD}=\widehat{ACE}\)
Xét \(\Delta ABD\)và \(\Delta ACE\)
+ \(\widehat{ABD}=\widehat{ACE}\)
+ AB = AC (gt)
+BD = EC(gt)
\(\Rightarrow\Delta ABD=\Delta ACE \left(c.g.c\right)\)
Xét \(\Delta AHB\)và \(\Delta AKC\)
+ AH = AK (gt)
+ AB = AC (gt)
+ \(\widehat{DAB}=\widehat{EAC}\)(hai góc tương ứng)
\(\Rightarrow\Delta AHB=\Delta AKC\left(c.g.c\right)\)
=> HB=CK ( hai cạnh tương ứng)
d) Vì O là giao điểm của HB và AM nên O,A,M nằm trên cùng một đường thẳng
Nên \(\widehat{OAM}=\widehat{BAM}+\widehat{BAO}=\widehat{CAM}+\widehat{CAO}\)
\(\widehat{BAM}=\widehat{CAM}\)vì hai góc tương ứng (cmt)
\(\Rightarrow\widehat{BAO}=\widehat{CAO}\)
Xét \(\Delta BAO=\Delta CAO\)
+ AB = CA (gt)
+ Chung AO
+ \(\widehat{BAO}=\widehat{CAO}\)(cmt)
\(\Delta BAO=\Delta CAO\left(c.g.c\right)\)
=>OB = OC (hai cạnh tương ứng)
a) Tam giác ABC có AB=AC nên ABC là tam giác cân => gócB = gócC (2 góc đáy)
a) Xét tam giác BAD và tam giác BAC, có:
góc BAD = góc BAC = 90o (gt)
BA: cạnh chung
góc ABD = góc ABC (Vì AB là p/g của BC)
Nên: Tam giác BAD = tam giác BAC ( g - c - g)
=> BD = BC (2 cạnh t/ư)
Ta có: AC vuông góc với AB (gt)
AC vuông góc với CF (gt)
=> AB // CF (Quan hệ từ _|_ -> //)
Nên: góc ABC = góc FCB (2 góc so le trong = nhau)
Lại có: CD vuông góc với CF (gt)
BF vuông góc với CF (gt)
=> CD // BF (Quan hệ từ _|_ -> //)
Hay: AC // BF
Do đó: góc ACB = góc FBC (2 góc so le trong = nhau)
Xét tam giác BFC và tam giác CAB, có:
góc FBC = góc ACB (cmt)
BC: cạnh chung
góc FCB = góc ABC (cmt)
Nên: tam giác BFC = tam giác CAB ( g - c - g)
=> góc BAC = góc CFB ( 2 góc t/ư)
Mà: góc BAC = 90o
Do đó: góc CFB = góc BAC = 90o
Xét tam giác BEF và tam giác BCF, có:
góc EBF = góc CBF (Vì BF là p/g của góc CBE)
BF: cạnh chung
góc BFE = góc BFC = 90o (cmt)
Nên: tam giác BEF = tam giác BCF ( g - c - g)
Vậy góc BCF = góc BEF ( 2 góc t/ư)
Hay: góc BCE = góc BEC (đpcm)
b) Trong tam giác ABC, có:
góc A + góc B + góc C = 180o (T/c tổng 3 góc trong 1 tam giác)
Vậy ........
c)Ta có: góc BFC = 90o (cm câu a)
Vậy BF vuông góc với CE (đpcm)
Mk ko chắc chắn ở câu b nhé!
a: Xét ΔABC có \(\widehat{B}=\widehat{C}\)
nên ΔABC cân tại A