K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b) Vì H là trung điểm BC 

=> BH = HC 

Mà BH = BE (gt)

=> BH = HC = BE 

Vì ∆ABC cân tại A 

=> AB = AC 

Mà AB = CD (gt)

=> AB = AC = CD 

Ta có : 

EB + AB = AE 

HC + CD = HD 

=> AE = HD 

a) Ta có : 

ACB là góc ngoài tại C của ∆ACD 

Vì CA = CD 

=> ∆ACD cân tại C 

=> D = DAC = 2D 

=> ACB = D + CAD = 2D 

=> D = \(\frac{1}{2}ACB\:=\frac{1}{2}ABC\)(dpcm)

30 tháng 7 2019

A B C H E F 1 2 3 1

CM: Ta có: BE = BH (gt) => t/giác BEH cân tại B  => \(\widehat{E}=\widehat{H_1}\)

Do \(\widehat{ABH}\) là góc ngoài của t/giác BHE nên :  \(\widehat{ABH}=\widehat{E}+\widehat{H_1}\) => \(\widehat{ABH}=2.\widehat{H_1}\)

Mà \(\widehat{ABH}=2.\widehat{C}\) 

=> \(2.\widehat{H_1}=2.\widehat{C}\) => \(\widehat{H_1}=\widehat{C}\)

mà \(\widehat{H_1}=\widehat{H_2}\) (đối đỉnh)

=> \(\widehat{C}=\widehat{H_2}\) => t/giác HFC cân tại F => FH = FC (2)

Ta có: \(\widehat{H_2}+\widehat{H_3}=90^0\) (cùng phụ nhau)

 \(\widehat{A_1}+\widehat{C}=90^0\) (t/giác AHC vuông tại H)

Mà \(\widehat{H_2}=\widehat{C}\) (cmt)

=> \(\widehat{A_1}=\widehat{H_3}\) => t/giác AFH cân tại F => AF = FH (2)

Từ (1) và (2) => FH = FA = FC

7 tháng 8 2019

Vì tam giác ABC là tam giác cân tại A.

\(\Rightarrow\widehat{B}=\widehat{C}\)

\(\Rightarrow\widehat{B}=\widehat{C}=\frac{180^0-100^0}{2}=\frac{80^0}{20}=40^0\)

Vì \(\widehat{EAC}\) là góc ngoài của \(\Delta ABC\).

\(\Rightarrow\widehat{EAC}=180^0-100^0=80^0\)

Vì AE = BC

Mà AB = AC

=> AE = AC

\(\Rightarrow\Delta ABC\) là tam giác cân.

\(\Rightarrow\widehat{AEC}=\widehat{ACE}=\frac{180^0-80^0}{2}=\frac{100^0}{2}=50^0\)

7 tháng 8 2019

Lạc Hiền . Mik thấy hơi sai sai bạn kiểm lại giúp mk nhé !!!

a,Ta có : ^BAC+^ABC+^ACB=1800(Theo định lí tổng 3 góc)

^BAC+450+1200=1800

^BAC =1800-(1200+450)

^BAC = 150

Kẻ ED vuông góc với AC và vẽ điểm F sao cho C là trung điểm của BF

Ta có: ^BCA = 1200 => ^ACD = 600(2 góc kề bù)

Vì tam giác CED vuông tại E => EN=CN=DN

Vậy tam giác ECD cân tại N

Vi ^ACD = 600 => ECD là tam giác đều

=> BC=CE(cm )

Tam giác BCE Cân tại C

^EBD=300

Xét tam giác ECD vuông tại E có ^EDB= 300 (tổng 3 góc)

Vậy EBD cân tại E => EB=ED

b,^ABE+^EBD=^ABD

^ABE+300=450

^ABE= 150 hay ^BAC=150

=> BA=BE

Tam giác ABE cân tại E

Mà BE=BD

=> AE=DE => ^AED = 900

Tam giác AED vuông cân

^EDA = 450

Tính ^BDA= 750

P/s : Dấu "^" là dấu góc nha :)

10 tháng 8 2019

A D I C B E 15 0

a, Ta có : \(\widehat{ACD}=\widehat{ABC}+\widehat{BAC}=45^0+15^0=60^0\),vì thế trong tam giác vuông CED thì \(\widehat{CDE}=30^0\). Gọi I là trung điểm của CD thì IE = IC . Tam giác ICE là tam giác đều nên CI = CE,từ đó CE = CB , do đó tam giác BEC cân tại đỉnh C, khi đó \(\widehat{CBE}=30^0=\widehat{CDE}\). Tam giác BED cân tại đỉnh E . Vậy EB = ED

b, \(\widehat{ABE}=\widehat{ABC}-\widehat{EBC}=45^0-30^0=15^0\Rightarrow\widehat{EAB}=\widehat{EBA}\)

Tam giác AEB cân ở E,do đó EA = EB,suy ra EA = ED

Tam giác EAD vuông cân,\(\widehat{EDA}=45^0\)

\(\widehat{BDA}=\widehat{BDE}+\widehat{EDA}=30^0+45^0=75^0\)

13 tháng 3 2019

hỏi chị google nha

13 tháng 3 2019

tao biet nhung tao khong lam ho dau

16 tháng 2 2020

a)\(\widehat{C}=\widehat{BAH}=90^O-\widehat{CAH}\)

\(\widehat{B}=\widehat{CAH}=90^O-\widehat{BAH}\)

b)Ta có:

\(\widehat{ADC}=\widehat{B}+\widehat{BAD}=\widehat{B}+\frac{\widehat{BAH}}{2}=\widehat{B}+\widehat{\frac{C}{2}}\)

Lại có:

\(\widehat{DAC}=180^O-\widehat{C}-\widehat{ADC}=180^O-\widehat{C}-\left(\widehat{B}+\widehat{\frac{C}{2}}\right)=\left(90^O-\widehat{B}\right)-\frac{\widehat{C}}{2}+\left(90^O-\widehat{C}\right)\)

\(=\widehat{C}-\widehat{\frac{C}{2}}+\widehat{B}=\widehat{B}+\frac{\widehat{C}}{2}\)

Suy ra:\(\widehat{ADC}=\widehat{DAC}\)

\(\Rightarrow\Delta ADC\)cân tại C

c)\(DK\perp BC;AH\perp BC\Rightarrow DK//AH\)

\(\Rightarrow\widehat{KDA}=\widehat{DAH}\)(hai góc so le trong)

Mà \(\widehat{BAD}=\widehat{DAH}\)

\(\Rightarrow\widehat{BAD}=\widehat{KDA}\)

\(\Rightarrow\)\(\Delta KAD\)cân tại K

d)Xét \(\Delta CDK-\Delta CAK\)

\(\hept{\begin{cases}CD=CA\\KD=KA\\CA.chung\end{cases}}\)

\(\Rightarrow\Delta CDK=\Delta CAK\left(c.c.c\right)\)

\(\Rightarrowđpcm\)

e)Xét\(\Delta AID-\Delta AHD\)

\(\hept{\begin{cases}AI=AH\\AD.chung\\\widehat{DAI}=\widehat{DAH}\end{cases}}\)

\(\Rightarrow\widehat{AID}=\widehat{AHD}=90^O\)

\(\Rightarrow DI\perp AB.Mà.AC\perp AB\)

\(\Rightarrow DI//AC\)

Bài làm

Vì ΔABCΔABC cân nên ⇒Bˆ=C1ˆ⇒B^=C1^

Mà C1ˆ=C2ˆC1^=C2^ ( 2 góc đối đỉnh ) ⇒Bˆ=C2ˆ⇒B^=C2^

Xét ΔABDΔABD vàΔICEΔICE có

CI=CA(gt)Bˆ=Cˆ2BD=CE(gt)⇒ΔABD=ΔICE(c−g−c)CI=CA(gt)B^=C^2BD=CE(gt)⇒ΔABD=ΔICE(c−g−c)

2) Xét ΔBMDΔBMD và ΔNECΔNEC có:

BMDˆ=CNEˆ=(900)Bˆ=C2ˆ(cmt)BD=CE⇒ΔBMD=ΔNECBMD^=CNE^=(900)B^=C2^(cmt)BD=CE⇒ΔBMD=ΔNEC ( cạnh huyền - góc nhọn)

⇒BM=CN⇒BM=CN ( 2 cạnh tương ứng )

                                 ~Học tốt!~