K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 5 2022

\(\left\{{}\begin{matrix}2x+ky=1\\kx+2y=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{k}{2}y+\dfrac{1}{2}\\k\left(-\dfrac{k}{2}y+\dfrac{1}{2}\right)+2y=1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{k}{2}y+\dfrac{1}{2}\\\left(-\dfrac{k^2}{2}+2\right)y+\left(\dfrac{k}{2}-1\right)=0\end{matrix}\right.\)

Hệ PT có nghiệm \(\Leftrightarrow\left(-\dfrac{k^2}{2}+2\right)y+\left(\dfrac{k}{2}-1\right)=0\) có nghiệm

\(\Leftrightarrow-\dfrac{k^2}{2}+2\ne0\Leftrightarrow\dfrac{k^2}{2}=2\Leftrightarrow k^2=4\Leftrightarrow k=\pm2\)

1 tháng 3 2021

a)

Khi m = 1, ta có:

{ x+2y=1+3   

  2x-3y=1

=> { x+2y=4

        2x-3y=1

=> { 2x+4y=8

        2x-3y=1

=> { x+2y=4

        2x-3y-2x-4y=1-8

=> { x=4-2y

       -7y = -7

=> { x = 2

        y = 1

Vậy khi m = 1 thì hệ phương trình có cặp nghệm

(x; y) = (2;1)

1 tháng 3 2021

a) Thay m=1 vào HPT ta có: 

\(\left\{{}\begin{matrix}x+2y=4\\2x-3y=1\end{matrix}\right.\)

\(\left\{{}\begin{matrix}2x+4y=8\\2x-3y=1\end{matrix}\right.\)

\(\left\{{}\begin{matrix}2x+4y=8\\7y=7\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)

Vậy HPT có nghiệm (x;y)= (2;1)

a) Thay m=1 vào hệ phương trình, ta được:

\(\left\{{}\begin{matrix}x+2y=4\\2x-3y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+4y=8\\2x-3y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}7y=7\\x+2y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=1\\x=4-2y=4-2=2\end{matrix}\right.\)

Vậy: Khi m=1 thì hệ phương trình có nghiệm duy nhất là (x,y)=(2;1)

b) Ta có: \(\left\{{}\begin{matrix}x+2y=m+3\\2x-3y=m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=m+3-2y\\2\left(m+3-2y\right)-3y=m\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=m+3-2y\\2m+6-4y-3y-m=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=m+3-2y\\-7y+m+6=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=m+3-2y\\-7y=-m-6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=m+3-2y\\y=\dfrac{m+6}{7}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=m+3-2\cdot\dfrac{m+6}{7}\\y=\dfrac{m+6}{7}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=m+3-\dfrac{2m+12}{7}\\y=\dfrac{m+6}{7}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{7m+21-2m-12}{7}=\dfrac{5m+9}{7}\\y=\dfrac{m+6}{7}\end{matrix}\right.\)

Để hệ phương trình có nghiệm duy nhất thỏa mãn x+y=3 thì \(\dfrac{5m+9}{7}+\dfrac{m+6}{7}=3\)

\(\Leftrightarrow6m+15=21\)

\(\Leftrightarrow6m=6\)

hay m=1

Vậy: Khi m=1 thì hệ phương trình có nghiệm duy nhất thỏa mãn x+y=3

1 tháng 3 2021

a/ Thay  \(m=1\) vào hpt ta có :

\(\left\{{}\begin{matrix}x+2y=4\\2x-3y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)

Vậy...

b/ Ta có :

\(\left\{{}\begin{matrix}x+2y=m+3\\2x-3y=m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{m+3}{2y}\\\dfrac{2\left(m+3\right)}{2y}-3y=m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{m+3}{2y}\\\dfrac{m+3}{y}-3y=m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{m+3}{2y}\\m-3y^2+3=my\end{matrix}\right.\)

 

 

NV
5 tháng 3 2020

1. \(\Leftrightarrow\left\{{}\begin{matrix}mx+m^2y=3m\\mx+4y=6\end{matrix}\right.\)

\(\Rightarrow\left(m^2-4\right)y=3\left(m-2\right)\)

\(\Leftrightarrow\left(m-2\right)\left(m+2\right)y=3\left(m-2\right)\)

Để pt có nghiệm duy nhất \(\Rightarrow\left(m-2\right)\left(m+2\right)\ne0\Rightarrow m\ne\pm2\)

Để pt vô nghiệm \(\Rightarrow\left\{{}\begin{matrix}\left(m-2\right)\left(m+2\right)=0\\3\left(m-2\right)\ne0\end{matrix}\right.\) \(\Rightarrow m=-2\)

2. Không thấy m nào ở hệ?

3. Bạn tự giải câu a

b/ \(\left\{{}\begin{matrix}6x+2my=2m\\\left(m^2-m\right)x+2my=m^2-m\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}y=\frac{\left(m-1\right)\left(1-x\right)}{2}\\\left(m^2-m-6\right)x=m^2-3m\end{matrix}\right.\)

Để hệ có nghiệm duy nhất \(\Rightarrow m^2-m-6\ne0\Rightarrow m\ne\left\{-2;3\right\}\)

Khi đó: \(\left\{{}\begin{matrix}x=\frac{m^2-3m}{m^2-m-6}=\frac{m}{m+2}\\y=\frac{\left(m-1\right)\left(1-x\right)}{2}=\frac{m-1}{m+2}\end{matrix}\right.\)

\(x+y^2=1\Leftrightarrow\frac{m}{m+2}+\frac{\left(m-1\right)^2}{\left(m+2\right)^2}=1\)

\(\Leftrightarrow m\left(m+2\right)+\left(m-1\right)^2=\left(m+2\right)^2\)

\(\Leftrightarrow m^2-4m-3=0\Rightarrow\) bấm máy, số xấu

NV
5 tháng 3 2020

4.

\(\Leftrightarrow\left\{{}\begin{matrix}m^2x+my=2m^2\\x+my=m+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2-1\right)x=2m^2-m-1=\left(2m+1\right)\left(m-1\right)\\y=2m-mx\end{matrix}\right.\)

- Với \(m=1\) hệ có vô số nghiệm

- Với \(m=-1\) hệ vô nghiệm

- Với \(m\ne\pm1\) hệ có nghiệm duy nhất:

\(\left\{{}\begin{matrix}x=\frac{\left(2m+1\right)\left(m-1\right)}{\left(m-1\right)\left(m+1\right)}=\frac{2m+1}{m+1}\\y=2m-mx=\frac{m}{m+1}\end{matrix}\right.\)

NV
6 tháng 4 2020

a/ Bạn tự giải

b/ Để hệ có vô số nghiệm

\(\Leftrightarrow\frac{k}{1}=\frac{2}{-1}=\frac{2}{1}\)

\(\Rightarrow\) Không tồn tại k thỏa mãn

c/ \(\Leftrightarrow\left\{{}\begin{matrix}2x-2y=2\\kx+2y=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y=x-1\\\left(k+2\right)x=4\end{matrix}\right.\)

Với \(k=-2\) hệ vô nghiệm (ktm)

Với \(k\ne-2\Rightarrow x=\frac{4}{k+2}\)

\(x+y=5\Leftrightarrow x+\left(x-1\right)=5\)

\(\Leftrightarrow2x=6\Rightarrow x=3\)

\(\Rightarrow\frac{4}{k+2}=3\Rightarrow k+2=\frac{4}{3}\Rightarrow k=-\frac{2}{3}\)

20 tháng 3 2020

a) \(\left\{{}\begin{matrix}5x-y=2\\x+5y=1\end{matrix}\right.\)

-> \(\left\{{}\begin{matrix}5x-y=2\\5x+25y=5\end{matrix}\right.\)

->\(\left\{{}\begin{matrix}26y=3\\5x-y=2\end{matrix}\right.\)

->\(\left\{{}\begin{matrix}y=\frac{3}{26}\\x=\frac{11}{26}\end{matrix}\right.\)

vậy...

b)\(\left\{{}\begin{matrix}x+y=-1\\kx-y=2\\x+ky=1\end{matrix}\right.\)

->\(\left\{{}\begin{matrix}y=-1-x\\kx-y=2\\x+ky=1\end{matrix}\right.\)

->\(\left\{{}\begin{matrix}kx-\left(-1-x\right)=2\\x+k\left(-1-x\right)=1\end{matrix}\right.\)

->\(\left\{{}\begin{matrix}x\left(k+1\right)=1\\x\left(1-k\right)=1+k\end{matrix}\right.\)

->\(\left\{{}\begin{matrix}x=\frac{1}{k+1}\\x=\frac{1+k}{1-k}\end{matrix}\right.\) dk x\(\ne\)-1 ; x\(\ne\)1

->\(\frac{1}{k+1}=\frac{1+k}{1-k}\)

->\(1-k=k^2+2k+1\)

->k2+3k=0

->\(\left[{}\begin{matrix}k=-3\\k=0\end{matrix}\right.\)(nhận)

vậy ....

20 tháng 3 2020

a, Thay k = 5 vào hệ phương trình ta được :

\(\left\{{}\begin{matrix}5x-y=2\\x+5y=1\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}25x-5y=10\\x+5y=1\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}5x-y=2\\26x=11\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}\frac{55}{26}-y=2\\x=\frac{11}{26}\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}y=\frac{3}{26}\\x=\frac{11}{26}\end{matrix}\right.\)

Vậy hệ phương trình có duy nhất 1 nghiệm \(\left(x;y\right)=\left(\frac{11}{26};\frac{3}{26}\right)\) với giá trị của k = 5 .

b, Ta có : \(\left\{{}\begin{matrix}kx-y=2\\x+ky=1\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}y=kx-2\\x+k\left(kx-2\right)=1\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}y=kx-2\\x+k^2x-2k=1\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}y=kx-2\\x\left(k^2+1\right)=1+2k\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}y=\frac{k\left(1+2k\right)}{k^2+1}-2\\x=\frac{1+2k}{k^2+1}\end{matrix}\right.\)

- Để \(x+y=-1\) thì :

\(\frac{1+2k}{k^2+1}+\frac{k\left(1+2k\right)}{k^2+1}-2=-1\)

=> \(\frac{k\left(1+2k\right)+1+2k}{k^2+1}=1\)

=> \(k\left(1+2k\right)+1+2k=k^2+1\)

=> \(k+2k^2+1+2k-k^2-1=0\)

=> \(k^2+3k=0\)

=> \(\left[{}\begin{matrix}k=0\\k=-3\end{matrix}\right.\)

Vậy để thỏa mãn điều kiền trên thì k có giá trị là 0 hay -3 .

3 tháng 1 2018

mọi người ơi giúp mình vs mai ktra r

=>3x+2y=4 và 4x-2y=2m

=>7x=2m+4 và 2x-y=m

=>x=2/7m+4/7 và y=2x-m=4/7m+8/7-m=-3/7m+8/7

x<1; y<1

=>2/7m+4/7<1 và -3/7m+8/7<1

=>2/7m<3/7 và -3/7m<-1/7

=>m<3/2 và m>1/3