K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2015

Phương Thảo copy lại của Ngọc Thạch ở Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath

14 tháng 2 2016

A=21+22+23+...............+259+260

A=(21+22+23)+...............+(258+259+260)

A=2.(1+2+22)+............+258.(1+2+22)

A=2.7+.......................+258.7

A=(2+24+..............+258).7 chia hết cho 7(đpcm)

29 tháng 10 2015

+ Chia hết cho 4:

A= 3+ 32+ 33+ 34+ ..... + 359+ 360

  = (3+ 32)+ (33+ 34)+ ..... + (359+ 360)

  = 3 (1+ 3)+ 33 (1+ 3)+ ..... + 359 (1+ 3)

  = (3+ 33+ ..... + 359) .4 chia hết cho 4

Vậy A chia hết cho 4.

+ Chia hết cho 13:

A= 3+ 32+ 33+ 34+ ..... + 359+ 360

  = (3+ 32+ 33)+ (34+ 35+ 36)+ ..... + (358+ 359+ 360)

  = 3 (1+ 3+ 32)+ 34 (1+ 3+ 32)+ ..... + 358 (1+ 3+ 32)

  = (3+ 34+ ..... + 358) .13 chia hết cho 13

Vậy A chia hết cho 13.

Tick đúng nhé!

2 tháng 11 2018

Thay mặt người đào tạo chương trình hôm nay : Có 200 suất học bỗng cho những học sinh tích cực hoạt động từ bây giờ ( Mỗi suất học bỗng là 100k). Nhận thưởng bằng cách vào google tìm kiếm.

Tôi là người phân phối chương trình xin hợp tác cùng chương trình học tập trực tuyến số 1 VN. Là Lazi nha mọi người khuyến mãi cho thành viên hoạt động đã xem nha

Link như sau vào google hoặc cốc cốc để tìm kiếm:

https://lazi.vn/quiz/d/17912/game-lien-quan-mobile-ra-doi-vao-ngay-thang-nam-nao

Copy cũng được nha

hihi alo

2 tháng 11 2018

A = 2 + 22 + 23 + ... + 260

A = (2 + 22) + (23 + 24) + ... + (259 + 260)

A = 6 + 22.(2 + 22) + ... + 258.(2 + 22)

A = 6 + 22 . 6 + ... + 258 . 6

A = 6 . (1 + 22 + ... + 258\(⋮\)3 (Vì trong tích có một thừa số chia hết 3.)

* Ngộ Facebook rồi đó bạn :v

21 tháng 10 2018

Lưu ý : 

\(\Rightarrow\)

Ai trả lời được sẽ được tặng 3 k !

Nhanh lên nha các bạn !

21 tháng 10 2018

a, Ta có: \(M=7^{2019}+7^{2018}-7^{2017}.\)

\(=2017^{2017}\left(7^2+7-1\right)=55.2017^{2017}\)

\(=11.5.2017^{2017}⋮11\)

f,\(2P=2^2+2^3+2^4+...+2^{60}+2^{61}\)

\(2P-P=P=\left(2^2+2^3+2^4+...+2^{60}+2^{61}\right)-\left(2+2^2+2^3+...+2^{59}+2^{60}\right)\)

\(P=2^{61}-2\)

28 tháng 10 2015

vi \(942^{60}\)tan cung la so chan 

ma 351^37 luon tan cung la 1 (1*1)

=>942^60-351^37 luon luon la sao le +>ko chia het cho 2 =>de sai

22 tháng 12 2018

\(Tacó:\left(2+2^2\right)\cdot\left(2^3+2^4\right)\cdot...\cdot\left(2^{59}+2^{60}\right)\)

\(A=6\cdot\left(2^3+2^4\right)\cdot...\cdot\left(2^{59}+2^{60}\right)\)

\(⋮\)6 do A \(\div\)\(\times\)6=A

22 tháng 12 2018

-  Xét \(A⋮2\)

Ta có :\(A=2+2^2+2^3+....+2^{60}\)

\(=2.\left(1+2+2^2+.....+2^{59}\right)\)

Vì \(2⋮2;\left(1+2+2^2+....+2^{59}\right)\inℕ^∗\)

Nên \(2.\left(1+2+2^2+....+2^{59}\right)⋮2\)

Do đó : \(A⋮2\)          \(\left(1\right)\)

- Xét \(A⋮3\)

Ta có : \(A=2+2^2+2^3+.....+2^{60}\)

\(=\left(2+2^2\right)+\left(2^3+2^4\right)+\left(2^5+2^6\right)+.....+\left(2^{59}+2^{60}\right)\)

\(=2\left(1+2\right)+2^3\left(1+2\right)+2^5\left(1+2\right)+.....+2^{59}\left(1+2\right)\)

\(=2.3+2^3.3+2^5.3+.....+2^{59}.3\)

\(=3.\left(2+2^3+2^5+....+2^{59}\right)\)

Vì \(3⋮3;\left(2+2^3+2^5+....+2^{59}\right)\inℕ^∗\)

Nên \(3.\left(2+2^3+2^5+....+2^{59}\right)⋮3\)            \(\left(2\right)\)

Từ (1) và (2), kết hợp với \(2.3=6;\left(2,3\right)=1\) suy ra  \(A⋮6\)      \(\left(đpcm\right)\)

10 tháng 4 2020

A=2+22+23+24+.....260

=> A=(2+22+23)+(24+25+26)+....+(258+259+260)

=> A=2(1+2+22)+24(1+2+22)+....+258(1+2+22)

=> A=2(1+2+4)+24(1+2+4)+....+258(1+2+4)

=> A=2.7+24.7+....+258.7

=> A=7(2+24+....+258)

=> A chia hết cho 7

10 tháng 4 2020

\(A=2+2^2+2^3+2^4+...+2^{60}\)

\(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)

\(A=2\cdot7+2^4\cdot7+...+2^{58}\cdot7\)

\(A=7\left(2+2^4+...+2^{58}\right)\)

suy ra A chia hết cho 7