Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\ge\sqrt{2}\left(a+b+c\right)\)(1)
\(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}< \sqrt{3}\left(a+b+c\right)\)(2)
Dễ thấy \(\left(a+b\right)^2\le2\left(a^2+b^2\right)\)nên \(a+b\le\sqrt{2\left(a^2+b^2\right)}\)
Tương tự \(b+c\le\sqrt{2\left(b^2+c^2\right)}\)\(a+c\le\sqrt{2\left(a^2+c^2\right)}\)
\(\Rightarrow2\left(a+b+c\right)\le\sqrt{2}\left(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\right)\)
\(\Rightarrow\sqrt{2}\left(a+b+c\right)\le\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\)
Do \(a,b,c\)là ba cạnh của một tam giác nên
\(\left(a-b\right)^2< c^2\Rightarrow a^2+b^2< c^2+2ab\Rightarrow\sqrt{a^2+b^2}< \sqrt{c^2+2ab}\)
Tương tự \(\sqrt{b^2+c^2}< \sqrt{a^2+2bc}\)\(\sqrt{a^2+c^2}< \sqrt{b^2+2ac}\)
Cộng vế theo vế ta được
\(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}< \sqrt{c^2+2ab}+\sqrt{a^2+2bc}+\sqrt{b^2+2ac}\)
Áp dụng BĐT \(x+y+z\le\sqrt{3\left(x^2+y^2+z^2\right)}\), ta có :
\(\sqrt{c^2+2ab}+\sqrt{a^2+2bc}+\sqrt{b^2+2ac}\le\sqrt{3\left(c^2+2ab+c^2+2bc+b^2+2ac\right)}\)
\(=\sqrt{3\left(a+b+c\right)^2}=\sqrt{3}\left(a+b+c\right)\)
P/s ko bt có đúng ko
ta có \(\left(a+b\right)^2\le2\left(a^2+b^2\right)\Rightarrow a+b\le\sqrt{2\left(a^2+b^2\right)}\)
chứng minh tương tự ta cũng có
\(b+c\le\sqrt{2\left(b^2+c^2\right)};c+a\le\sqrt{2\left(c^2+a^2\right)}\)
cộng các vế của các bdt lại , rồi bạn đưa \(\sqrt{2}\)ra ngoài, bạn sẽ có dpcm
( phần chứng minh \(< \sqrt{3}\left(a+b+c\right)\)bạn tự chứng minh nhá) :))
tạm thời chưa nghĩ ra cách dùng \(a^3+b^3\ge a^2b+ab^2=ab\left(a+b\right)\) :'<
Có: \(\sqrt[3]{4\left(a^3+b^3\right)}=\sqrt[3]{2\left(a+b\right)\left(2a^2-2ab+2b^2\right)}\)
\(=\sqrt[3]{2\left(a+b\right)\left[\frac{1}{2}\left(a+b\right)^2+\frac{3}{2}\left(a-b\right)^2\right]}=\sqrt[3]{2\left(a+b\right)\frac{1}{2}\left(a+b\right)^2}=a+b\)
Tương tự cộng lại ta có đpcm
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c\)
ư ư.. ra r :))))))))) cộng thêm Cauchy-Schwarz nữa nhé
Có: \(a^3+b^3\ge a^2b+ab^2\)\(\Leftrightarrow\)\(2\left(a^3+b^3\right)\ge a^3+b^3+a^2b+ab^2=\left(a+b\right)\left(a^2+b^2\right)\)
\(\Rightarrow\)\(\sqrt[3]{4\left(a^3+b^3\right)}\ge\sqrt[3]{2\left(a+b\right)\left(a^2+b^2\right)}\ge\sqrt[3]{2\left(a+b\right).\frac{\left(a+b\right)^2}{2}}=a+b\)
Tương tự cộng lại ra đpcm
2/
- Chứng minh \(\sqrt{2}\left(a+b+c\right)\le\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\)
Ta có \(\sqrt{2}.\left(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\right)\ge2\left(a+b+c\right)\)
\(\Leftrightarrow\sqrt{2}\left(a+b+c\right)\le\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\)
- Chứng minh \(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}< \sqrt{3}\left(a+b+c\right)\)
Bạn chứng minh bằng biến đổi tương đương
1/ \(ab+bc+ac=3abc\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\)
Ta có \(\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}\le\frac{1}{2a}+\frac{1}{2b}+\frac{1}{2c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\frac{3}{2}\)
Vậy min P = 3/2 tại a = b = c = 1
Đặt \(P=\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\)
Ta có:
\(a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2\Rightarrow\sqrt{a^2+b^2}\ge\dfrac{\sqrt{2}}{2}\left(a+b\right)\)
Tương tự và cộng lại ta được BĐT bên trái
Dấu "=" xảy ra khi \(a=b=c\)
Bên phải:
Áp dụng BĐT Bunhiacopxki:
\(P^2\le3\left(a^2+b^2+b^2+c^2+c^2+a^2\right)=6\left(a^2+b^2+c^2\right)\)
Mặt khác do a;b;c là 3 cạnh của 1 tam giác:
\(\Rightarrow\left\{{}\begin{matrix}a+b>c\\a+c>b\\b+c>a\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}ac+bc>c^2\\ab+bc>b^2\\ab+ac>c^2\end{matrix}\right.\)
\(\Rightarrow a^2+b^2+c^2< 2\left(ab+bc+ca\right)\)
\(\Rightarrow3\left(a^2+b^2+c^2\right)< 6\left(ab+bc+ca\right)\)
\(\Rightarrow P^2\le3\left(a^2+b^2+c^2\right)+3\left(a^2+b^2+c^2\right)< 3\left(a^2+b^2+c^2\right)+6\left(ab+bc+ca\right)\)
\(\Rightarrow P^2< 3\left(a+b+c\right)^2\Rightarrow P< \sqrt{3}\left(a+b+c\right)\)
+) Chứng minh: \(\sqrt{2}\left(a+b+c\right)\le\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\)
Áp dụng B ĐT Bu nhia có: (a+ b)2 \(\le\) 2(a2 + b2) => \(a+b\le\sqrt{2}.\sqrt{a^2+b^2}\)
Tương tự ta có: \(b+c\le\sqrt{2}.\sqrt{b^2+c^2};c+a\le\sqrt{2}.\sqrt{c^2+a^2}\)
Cộng từng vế của B ĐT trên => \(2.\left(a+b+c\right)\le\sqrt{2}.\left(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\right)\)
=> \(\sqrt{2}\left(a+b+c\right)\le\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\)
Dấu "=" xảy ra khi a = b = c
+) Chứng minh \(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}<\sqrt{3}\left(a+b+c\right)\)
Vì a; b; c là 3 cạnh của tam giác nên ta có: (a - b)2 < c2; (b - c)2 < a2 ; (c -a) 2 < b2
=> a2 + b2 < c2 + 2ab; b2 + c2 < a2 + 2bc ; c2 + a2 < b2 + 2ac
=> \(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}<\sqrt{c^2+2ab}+\sqrt{a^2+2bc}+\sqrt{b^2+2ca}\)
Mặt khác, Dễ dạng chứng minh được (x+ y + z)2 \(\le\) 3.(x2+y2+z2)( Bằng cách biến đổi tuơng đương)
=> \(\left(\sqrt{c^2+2ab}+\sqrt{a^2+2bc}+\sqrt{b^2+2ca}\right)^2\le3\left(c^2+2ab+a^2+2bc+b^2+2ca\right)=3\left(a+b+c\right)^2\)
=> \(\sqrt{c^2+2ab}+\sqrt{a^2+2bc}+\sqrt{b^2+2ca}\le\sqrt{3}\left(a+b+c\right)\)
=> \(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}<\sqrt{3}\left(a+b+c\right)\)
Theo chứng minh này, dấu "=" không thể xảy ra ở Bất đẳng thức thứ 2
Vậy....
Lời giải:
Vế đầu tiên:
Áp dụng BĐT AM-GM:
\(a^2+b^2\geq 2ab\Rightarrow 2(a^2+b^2)\geq (a+b)^2\Leftrightarrow a^2+b^2\geq \frac{(a+b)^2}{2}\)
Do đó, \(\sqrt{a^2+b^2}\geq \frac{a+b}{\sqrt{2}}\). Tương tự với các biểu thức còn lại và cộng theo vế:
\(\Rightarrow S\geq \sqrt{2}(a+b+c)\) (đpcm)
Dấu bằng xảy ra khi $a=b=c$
Vế sau:
Áp dụng BĐT Cauchy-Schwarz:
\(S^2\leq (1+1+1)(a^2+b^2+b^2+c^2+c^2+a^2)\)
\(\Leftrightarrow S^2\leq 6(a^2+b^2+c^2)\Leftrightarrow S\leq \sqrt{6(a^2+b^2+c^2)}\) \((1)\)
Ta sẽ cm \(\sqrt{6(a^2+b^2+c^2)}< \sqrt{3}(a+b+c)\)
\(\Leftrightarrow 2(a^2+b^2+c^2)\leq (a+b+c)^2\Leftrightarrow a^2+b^2+c^2\leq 2(ab+bc+ac)\)
\(\Leftrightarrow a(b+c-a)+b(c+a-b)+c(a+b-c)\geq 0\) (luôn đúng vì $a,b,c$ là độ dài ba cạnh tam giác)
Do đó \(\sqrt{6(a^2+b^2+c^2)}<\sqrt{3}(a+b+c)(2)\)
Từ \((1),(2)\Rightarrow S<\sqrt{3}(a+b+c)\)
Vậy ta có đpcm.