K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2015

 

a.2014100  + 201499

=201499.(2014+1)

=201499.2015

=> 2014100  + 201499 chia hết cho 2015

 b.31994 + 31993   31992 

=31992.(32+3-1)

=31992.11

=>31994 + 31993   31992 chia hết cho 11

c. 413 _ 325 _ 88

=(22)13-(25)5-(23)8

=226-225-224

=224.(22-2-1)

=224.5

=> 413 _ 325 _ 8chia hết cho 5

a)\(2014^{100}+2014^{99}=2014^{99}.\left(2014+1\right)=2014^{99}.2015⋮2015\left(\text{Đ}PCM\right)\)

b)\(3^{1994}+3^{1993}-3^{1992}=3^{1992}.\left(3^2+3-1\right)=3^{1992}.\left(9+3-1\right)=3^{1992}.11⋮11\left(\text{Đ}PCM\right)\)

c)\(4^{13}-32^5-8^8=\left(2^2\right)^{13}-\left(2^5\right)^5-\left(2^3\right)^8=2^{26}-2^{25}-2^{24}=2^{24}.\left(2^2-2-1\right)\)

Đề sai rồi bạn 2^14 luôn tận cùng chẵn =>2^14 không chia hết cho 5

Chúc bạn học tốt

2 tháng 7 2018

Ta có: \(A=3^1+3^2+3^3+....+3^{30}\)

               \(=\left(3^1+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+....+\left(3^{28}+3^{29}+3^{30}\right)\)

                = 3.(1+3+32)+34.(1+3+32)+....+328.(1+3+32)

                = 3.13 + 34.13 + .....+ 328.13

                = 13.(3+34+...+328) chia hết cho 13

Vậy A chia hết cho 13

2 tháng 7 2018

\(A=3^1+3^2+3^3+....+3^{30}\)

\(=\left(3^1+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{28}+3^{29}+3^{30}\right)\)

\(=3\left(1+3+3^2\right)+3^3\left(1+2+3\right)+...+3^{28}\left(1+3+3^2\right)\)

\(=\left(1+3+3^2\right)\left(3+3^3+...+3^{28}\right)\)

\(=13\left(3+3^3+...+3^{28}\right)\)\(⋮\)\(13\)

Vậy  A chia hết cho 13

15 tháng 11 2015

a, A = 31 + 32 + 33 + 34 +...+ 399 + 3100

3A = 3(31 + 32 + 33 + 34 +...+ 399 + 3100)

3A = 32 + 33 + 34 + 35 +...+ 3100 + 3101

3A - A = (32 + 33 + 34 + 35 +...+ 3100 + 3101) - (31 + 32 + 33 + 34 +...+ 399 + 3100)

2A = 3101 - 31 = 3101 - 3

A = \(\frac{3^{101}-3}{2}\)

b, A = 31 + 32 + 33 + 34 +...+ 399 + 3100

A = (31 + 32 + 33 + 34) +...+ (397 + 398 + 399 + 3100)

A = (31 + 32 + 33 + 34)) +...+ 396(31 + 32 + 33 + 34)

A = 120 +...+ 396.120

A = 120(1 +...+ 396) chia hết cho 40 (ĐPCM)

I don't now

...............

.................

13 tháng 8 2015

Triệu Đăng mới đổi tên thành Minh Triều đo bạn

3 tháng 1 2018

Bài này từ 2 năm trước rùi

30 tháng 7 2020

+) Vì \(3⋮3\)\(3^2⋮3\)\(3^3⋮3\)\(3^4⋮3\); .............. ; \(3^{119}⋮3\)\(3^{120}⋮3\)

\(\Rightarrow3+3^2+3^3+3^4+.........+3^{119}+3^{120}⋮3\)

hay \(A⋮3\)

+) \(A=3+3^2+3^3+3^4+..........+3^{119}+3^{120}\)

\(=\left(3+3^2\right)+\left(3^3+3^4\right)+..........+\left(3^{119}+3^{120}\right)\)

\(=3\left(1+3\right)+3^3\left(1+3\right)+.........+3^{119}\left(1+3\right)\)

\(=3.4+3^3.4+........+3^{119}.4=4.\left(3+3^3+.......+3^{119}\right)⋮4\)

+) \(A=3+3^2+3^3+3^4+...........+3^{119}+3^{120}\)

\(=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+........+\left(3^{118}+3^{119}+3^{120}\right)\)

\(=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+..........+3^{118}\left(1+3+3^2\right)\)

\(=3.13+3^4.13+.......+3^{118}.13=13.\left(3+3^4+........+3^{118}\right)⋮13\)

Vậy \(A⋮3,4,13\)

30 tháng 7 2020

A = 3 + 32 + 33 + ... + 3120

= 3 (1 + 3 + 32 + ... + 3119

Vì 3 chia hết cho 3 nên 3 (1 + 3 + 32 + ... + 3119) chia hết cho 3

=> A chia hết cho 3   (đpcm)

A = 3 + 32 + 33 + ... + 3120

= (3 + 32) + (33 + 34) + ... + (3119 + 3120)

= 3 (1 + 3) + 33 (1 + 3) + ... + 3119 (1 + 3)

= 3 . 4 + 33 . 4 + ... + 3119 . 4

Vì 4 chia hết cho 4 nên 3 . 4 + 33 . 4 + ... + 3119 . 4 chia hết cho 4

=> A chia hết cho 4   (đpcm)

A = 3 + 32 + 33 + ... + 3120

= (3 + 32 + 33) + (34 + 35 + 36) + ... + (3118 + 3119 + 3120)

= 3 (1 + 3 + 32) + 34 (1 + 3 + 32) + ... + 3118 (1 + 3 + 32)

= 3 . 13 + 34 . 13 + ... + 3118 . 13

Vì 13 chia hết cho 13 nên 3 . 13 + 34 . 13 + ... + 3118 . 13 chia hết cho 13

=> A chia hết cho 13   (đpcm)

7 tháng 11 2019

1.

\(\left(x+2\right)^3=\frac{1}{8}\)

\(\Rightarrow\left(x+2\right)^3=\left(\frac{1}{2}\right)^3\)

\(\Rightarrow x+2=\frac{1}{2}\)

\(\Rightarrow x=\frac{1}{2}-2\)

\(\Rightarrow x=-\frac{3}{2}\)

Vậy \(x=-\frac{3}{2}.\)

2.

b) Ta có:

\(5^5-5^4+5^3\)

\(=5^3.\left(5^2-5+1\right)\)

\(=5^3.\left(25-5+1\right)\)

\(=5^3.21\)

\(21⋮7\) nên \(5^3.21⋮7.\)

\(\Rightarrow5^5-5^4+5^3⋮7\left(đpcm\right).\)

c) Ta có:

\(2^{19}+2^{21}+2^{22}\)

\(=2^{19}.\left(1+2^2+2^3\right)\)

\(=2^{19}.\left(1+4+8\right)\)

\(=2^{19}.13\)

\(13⋮13\) nên \(2^{19}.13⋮13.\)

\(\Rightarrow2^{19}+2^{21}+2^{22}⋮13\left(đpcm\right).\)

Chúc bạn học tốt!

7 tháng 11 2019

bạn ơi ko ấy đc câu 2a hả ???