Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.2014100 + 201499
=201499.(2014+1)
=201499.2015
=> 2014100 + 201499 chia hết cho 2015
b.31994 + 31993 _ 31992
=31992.(32+3-1)
=31992.11
=>31994 + 31993 _ 31992 chia hết cho 11
c. 413 _ 325 _ 88
=(22)13-(25)5-(23)8
=226-225-224
=224.(22-2-1)
=224.5
=> 413 _ 325 _ 88 chia hết cho 5
a)\(2014^{100}+2014^{99}=2014^{99}.\left(2014+1\right)=2014^{99}.2015⋮2015\left(\text{Đ}PCM\right)\)
b)\(3^{1994}+3^{1993}-3^{1992}=3^{1992}.\left(3^2+3-1\right)=3^{1992}.\left(9+3-1\right)=3^{1992}.11⋮11\left(\text{Đ}PCM\right)\)
c)\(4^{13}-32^5-8^8=\left(2^2\right)^{13}-\left(2^5\right)^5-\left(2^3\right)^8=2^{26}-2^{25}-2^{24}=2^{24}.\left(2^2-2-1\right)\)
Đề sai rồi bạn 2^14 luôn tận cùng chẵn =>2^14 không chia hết cho 5
Chúc bạn học tốt
Ta có: \(A=3^1+3^2+3^3+....+3^{30}\)
\(=\left(3^1+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+....+\left(3^{28}+3^{29}+3^{30}\right)\)
= 3.(1+3+32)+34.(1+3+32)+....+328.(1+3+32)
= 3.13 + 34.13 + .....+ 328.13
= 13.(3+34+...+328) chia hết cho 13
Vậy A chia hết cho 13
\(A=3^1+3^2+3^3+....+3^{30}\)
\(=\left(3^1+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{28}+3^{29}+3^{30}\right)\)
\(=3\left(1+3+3^2\right)+3^3\left(1+2+3\right)+...+3^{28}\left(1+3+3^2\right)\)
\(=\left(1+3+3^2\right)\left(3+3^3+...+3^{28}\right)\)
\(=13\left(3+3^3+...+3^{28}\right)\)\(⋮\)\(13\)
Vậy A chia hết cho 13
a, A = 31 + 32 + 33 + 34 +...+ 399 + 3100
3A = 3(31 + 32 + 33 + 34 +...+ 399 + 3100)
3A = 32 + 33 + 34 + 35 +...+ 3100 + 3101
3A - A = (32 + 33 + 34 + 35 +...+ 3100 + 3101) - (31 + 32 + 33 + 34 +...+ 399 + 3100)
2A = 3101 - 31 = 3101 - 3
A = \(\frac{3^{101}-3}{2}\)
b, A = 31 + 32 + 33 + 34 +...+ 399 + 3100
A = (31 + 32 + 33 + 34) +...+ (397 + 398 + 399 + 3100)
A = (31 + 32 + 33 + 34)) +...+ 396(31 + 32 + 33 + 34)
A = 120 +...+ 396.120
A = 120(1 +...+ 396) chia hết cho 40 (ĐPCM)
I don't now
...............
.................
+) Vì \(3⋮3\); \(3^2⋮3\); \(3^3⋮3\); \(3^4⋮3\); .............. ; \(3^{119}⋮3\); \(3^{120}⋮3\)
\(\Rightarrow3+3^2+3^3+3^4+.........+3^{119}+3^{120}⋮3\)
hay \(A⋮3\)
+) \(A=3+3^2+3^3+3^4+..........+3^{119}+3^{120}\)
\(=\left(3+3^2\right)+\left(3^3+3^4\right)+..........+\left(3^{119}+3^{120}\right)\)
\(=3\left(1+3\right)+3^3\left(1+3\right)+.........+3^{119}\left(1+3\right)\)
\(=3.4+3^3.4+........+3^{119}.4=4.\left(3+3^3+.......+3^{119}\right)⋮4\)
+) \(A=3+3^2+3^3+3^4+...........+3^{119}+3^{120}\)
\(=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+........+\left(3^{118}+3^{119}+3^{120}\right)\)
\(=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+..........+3^{118}\left(1+3+3^2\right)\)
\(=3.13+3^4.13+.......+3^{118}.13=13.\left(3+3^4+........+3^{118}\right)⋮13\)
Vậy \(A⋮3,4,13\)
A = 3 + 32 + 33 + ... + 3120
= 3 (1 + 3 + 32 + ... + 3119)
Vì 3 chia hết cho 3 nên 3 (1 + 3 + 32 + ... + 3119) chia hết cho 3
=> A chia hết cho 3 (đpcm)
A = 3 + 32 + 33 + ... + 3120
= (3 + 32) + (33 + 34) + ... + (3119 + 3120)
= 3 (1 + 3) + 33 (1 + 3) + ... + 3119 (1 + 3)
= 3 . 4 + 33 . 4 + ... + 3119 . 4
Vì 4 chia hết cho 4 nên 3 . 4 + 33 . 4 + ... + 3119 . 4 chia hết cho 4
=> A chia hết cho 4 (đpcm)
A = 3 + 32 + 33 + ... + 3120
= (3 + 32 + 33) + (34 + 35 + 36) + ... + (3118 + 3119 + 3120)
= 3 (1 + 3 + 32) + 34 (1 + 3 + 32) + ... + 3118 (1 + 3 + 32)
= 3 . 13 + 34 . 13 + ... + 3118 . 13
Vì 13 chia hết cho 13 nên 3 . 13 + 34 . 13 + ... + 3118 . 13 chia hết cho 13
=> A chia hết cho 13 (đpcm)
1.
\(\left(x+2\right)^3=\frac{1}{8}\)
\(\Rightarrow\left(x+2\right)^3=\left(\frac{1}{2}\right)^3\)
\(\Rightarrow x+2=\frac{1}{2}\)
\(\Rightarrow x=\frac{1}{2}-2\)
\(\Rightarrow x=-\frac{3}{2}\)
Vậy \(x=-\frac{3}{2}.\)
2.
b) Ta có:
\(5^5-5^4+5^3\)
\(=5^3.\left(5^2-5+1\right)\)
\(=5^3.\left(25-5+1\right)\)
\(=5^3.21\)
Vì \(21⋮7\) nên \(5^3.21⋮7.\)
\(\Rightarrow5^5-5^4+5^3⋮7\left(đpcm\right).\)
c) Ta có:
\(2^{19}+2^{21}+2^{22}\)
\(=2^{19}.\left(1+2^2+2^3\right)\)
\(=2^{19}.\left(1+4+8\right)\)
\(=2^{19}.13\)
Vì \(13⋮13\) nên \(2^{19}.13⋮13.\)
\(\Rightarrow2^{19}+2^{21}+2^{22}⋮13\left(đpcm\right).\)
Chúc bạn học tốt!