Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S= 1+ ( 3+33) + ( 32 +34) + ...+ (328+330)
= 1 + 3.10 + 32.10 +........+ 328.10
= 1+ 10.( 3+32 + .....+ 328) chia 10 dư 1
=> S có chữ số tạn cùng là 1
\(1023^{1024}=\left(1023^4\right)^{256}=\left(....1\right)^{256}=\left(.....6\right)\)
\(8^{1975}=8^3.8^{1972}=512.\left(8^4\right)^{493}=512.\left(4096\right)^{493}=512.\left(.....6\right)=\left(.....2\right)\)
\(2^{4n-5}=\left(2^4\right)^n:2^5=\left(16\right)^n:32=\left(....6\right):32=\left(....8\right)\)
\(2^{4n+2}+1=\left(2^4\right)^5.2^2+1=\left(16\right)^5.4+1=\left(....6\right).4+1=\left(...4\right)+1=\left(.....5\right)\)
P/s: Hoq chắc ạ :))))
a) Vì 7^n có tận cùng là lẻ, mà A= 7+7^2+.....+7^8 là tổng của 7 số lẻ nên a có tận cùng là số lẻ.
b) Có A= 7+7^2+7^3+7^4+7^5+7^6+7^7+7^8
A= (7+7^3) + (7^2+7^4) + (7^5+7^7) + (7^6+7^8)
A= 7.(1+7^2) + 7^2 .(1+7^2) + 7^5.(1+7^2) + 7^6.(1+7^2)
A= 7.50 + 7^2.50 + 7^5.50 + 7^6.50 = (7+7^2+7^5+7^6) .50
Do đó A chia hết cho 50 => A chia hết cho 5.
c) Vì A lẻ và A chia hết cho 5 => A có tận cùng là số 5.