K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2018

\(A=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\)

=>\(2A=1+\frac{1}{2}+...+\frac{1}{2^8}\)

=>\(2A-A=\left(1+\frac{1}{2}+...+\frac{1}{2^8}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\right)\)

                       \(=1-\frac{1}{2^9}=\frac{511}{512}\)

\(B=\frac{1}{4}+\frac{1}{12}+\frac{1}{36}+\frac{1}{108}+\frac{1}{324}+\frac{1}{972}\)

=>\(3B=\frac{3}{4}+\frac{1}{4}+\frac{1}{12}+\frac{1}{36}+\frac{1}{108}+\frac{1}{324}\)

=>\(3B-B=\left(\frac{3}{4}+\frac{1}{4}+\frac{1}{12}+...+\frac{1}{324}\right)-\left(\frac{1}{4}+\frac{1}{12}+\frac{1}{36}+...+\frac{1}{972}\right)\)

=>\(2B=\frac{3}{4}-\frac{1}{972}=\frac{182}{243}\)

=>\(B=\frac{182}{243}:2=\frac{91}{243}\)

                        

28 tháng 2 2017

91/243

28 tháng 2 2017

91/243 đó em

3 tháng 4 2017

820/2187

3 tháng 4 2017

3xB=3x(1/4+1/12+1/36+1/108+1/324+1/972+1/2916+1/8748)

3xB=3/4 + 1/4 +1/12 +1/36 +.........+1/2916

3xB - B= (3/4 + 1/4 + 1/12+1/36 + .........+1/2916) - ( 1/4 +1/12 +1/36 +1/108 + 1/324 + 1/972 + 1/2916 +1/8748 )

2xB =3/4 - 1/8748

2xB =1640/2187

B = 1640/2187 :2

B = 820/2187.

21 tháng 7 2019

\(A=\frac{1}{4}+\frac{1}{12}+\frac{1}{36}+\frac{1}{108}+\frac{1}{324}+\frac{1}{972}.\)

\(3A=3\left(\frac{1}{4}+\frac{1}{12}+\frac{1}{36}+\frac{1}{108}+\frac{1}{324}+\frac{1}{972}\right).\)

\(3A=\frac{3}{4}+\frac{3}{12}+\frac{3}{36}+\frac{3}{108}+\frac{3}{324}+\frac{3}{972}\)

\(3A=\frac{3}{4}+\frac{1}{4}+\frac{1}{12}+\frac{1}{36}+\frac{1}{108}+\frac{1}{324}\)

\(2A=\frac{3}{4}+\frac{1}{4}+\frac{1}{12}+\frac{1}{36}+\frac{1}{108}+\frac{1}{324}-\frac{1}{4}-\frac{1}{12}-\frac{1}{36}-\frac{1}{108}-\frac{1}{324}-\frac{1}{972}\)

\(2A=\frac{3}{4}-\frac{1}{972}=\frac{182}{243}\)

\(\Rightarrow A=\frac{182}{243}:2=\frac{91}{243}\)

\(\Rightarrow A=\frac{1}{4}+\frac{1}{12}+\frac{1}{36}+\frac{1}{108}+\frac{1}{324}+\frac{1}{972}=\frac{91}{243}\)

21 tháng 7 2019

ta có    

A x 3 =3/4 + 3/12 + 3/36 +3/108 + 3/324 +3/972

A x 3=3/4 +1/4 + 1/12 +1/36 +1/108

A x 3 - A =(3/4 +1/12+1/36 +1/108)-(1/4 +1/12 +1/36 +1/108 +1/324 + 1/972)

A x 2=3/4 +1/12 +1/36 +1/108 - 1/4 -1/12 -1/36-1/108 -1/324 -1/972

A x 2= 3/4 - 1/972

A x 2= 728/972

A =728/972 : 2

A=91/243

29 tháng 7 2016

\(3C=1+\frac{1}{3}+.....+\frac{1}{3^{2015}}\)

\(\Rightarrow3C-C=2C=\left(1+\frac{1}{3}+.....+\frac{1}{3^{2014}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}.....+\frac{1}{3^{2015}}\right)=1-\frac{1}{3^{2015}}\)

\(\Rightarrow C=\frac{3^{2015}-1}{3^{2015}.2}\)

29 tháng 7 2016

\(D=4\left(1+\frac{1}{3}+....+\frac{1}{3^5}\right)\)

\(\Rightarrow3D=4\left(3+1+....+\frac{1}{3^4}\right)\)

\(\Rightarrow3D-D=2D=4\left(3+1+....+\frac{1}{3^4}\right)-4\left(1+\frac{1}{3}+....+\frac{1}{3^5}\right)\)

\(\Rightarrow2D=4\left(3-\frac{1}{3^5}\right)\Rightarrow D=2\left(3-\frac{1}{3^5}\right)\)

12 tháng 4 2016

A=511/512

B=91/243

12 tháng 4 2016

A=511/512

B=91/243

25 tháng 8 2020

a) \(B=\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+\frac{1}{8\cdot11}+...+\frac{1}{302\cdot305}\)

\(B=\frac{1}{3}\left(\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+...+\frac{3}{302\cdot305}\right)\)

\(B=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{302}-\frac{1}{305}\right)\)

\(B=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{305}\right)=\frac{1}{3}\cdot\frac{303}{610}=\frac{101}{610}\)

b) \(C=\frac{6}{1\cdot4}+\frac{6}{4\cdot7}+....+\frac{6}{202\cdot205}\)

\(C=2\left(\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+...+\frac{3}{202\cdot205}\right)=2\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{202}-\frac{1}{205}\right)\)

\(=2\left(1-\frac{1}{205}\right)=2\cdot\frac{204}{205}=\frac{408}{205}\)

c) \(D=\frac{5^2}{1\cdot6}+\frac{5^2}{6\cdot11}+...+\frac{5^2}{266\cdot271}\)

\(D=5\left(\frac{5}{1\cdot6}+\frac{5}{6\cdot11}+...+\frac{5}{266\cdot271}\right)\)

\(D=5\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{266}-\frac{1}{271}\right)=5\left(1-\frac{1}{271}\right)=5\cdot\frac{270}{271}=\frac{1350}{271}\)

d) \(E=\frac{3}{4}\cdot\frac{8}{9}\cdot\frac{5}{16}\cdot...\cdot\frac{9999}{10000}=\frac{3\cdot8\cdot15\cdot...\cdot9999}{4\cdot9\cdot16\cdot...\cdot10000}=\frac{3}{10000}\)

e) \(F=\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{4^2}\right)...\left(1-\frac{1}{50^2}\right)\)

\(F=\left(1-\frac{1}{4}\right)\left(1-\frac{1}{9}\right)\left(1-\frac{1}{16}\right)...\left(1-\frac{1}{2500}\right)\)

\(F=\frac{3}{4}\cdot\frac{8}{9}\cdot\frac{15}{16}\cdot...\cdot\frac{2499}{2500}=\frac{3\cdot8\cdot15\cdot...\cdot2499}{4\cdot9\cdot16\cdot...\cdot2500}=\frac{3}{2500}\)

25 tháng 8 2020

a. \(B=\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{302.305}\)

\(\Rightarrow3B=\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{302.305}\)

\(\Rightarrow3B=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{302}-\frac{1}{305}\)

\(\Rightarrow3B=\frac{1}{2}-\frac{1}{305}\)

\(\Rightarrow3B=\frac{303}{610}\)

\(\Rightarrow B=\frac{101}{610}\)

b. \(C=\frac{6}{1.4}+\frac{6}{4.7}+...+\frac{6}{202.205}\)

\(\Rightarrow\frac{1}{2}C=\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{202.205}\)

\(\Rightarrow\frac{1}{2}C=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{202}-\frac{1}{205}\)

\(\Rightarrow\frac{1}{2}C=1-\frac{1}{205}\)

\(\Rightarrow\frac{1}{2}C=\frac{204}{205}\)

\(\Rightarrow C=\frac{408}{205}\)

c. \(D=\frac{5^2}{1.6}+\frac{5^2}{6.11}+...+\frac{5^2}{266.271}\)

\(\Rightarrow\frac{1}{5}D=\frac{5}{1.6}+\frac{5}{6.11}+...+\frac{5}{266.271}\)

\(\Rightarrow\frac{1}{5}D=1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{266}-\frac{1}{271}\)

\(\Rightarrow\frac{1}{5}D=1-\frac{1}{271}\)

\(\Rightarrow\frac{1}{5}D=\frac{270}{271}\)

\(\Rightarrow D=\frac{1350}{271}\)

Ta có: \(A=\frac{1}{3}-\frac{3}{4}+\frac{3}{5}+\frac{1}{73}-\frac{1}{36}+\frac{1}{15}-\frac{2}{9}\)

\(A=\left(\frac{1}{3}-\frac{2}{9}\right)+\left(\frac{3}{5}+\frac{1}{15}\right)-\frac{3}{4}-\frac{1}{36}+\frac{1}{73}\)

\(A=\left(\frac{3}{9}-\frac{2}{9}\right)+\left(\frac{9}{15}+\frac{1}{15}\right)-\left(\frac{3}{4}+\frac{1}{36}\right)+\frac{1}{73}\)

\(A=\frac{1}{9}+\frac{10}{15}-\frac{7}{9}+\frac{1}{73}\)

\(A=\frac{1}{9}+\frac{2}{3}-\frac{7}{9}+\frac{1}{73}\)

\(A=\frac{1}{9}+\frac{6}{9}-\frac{7}{9}+\frac{1}{73}\)

\(A=\frac{7}{9}-\frac{7}{9}+\frac{1}{73}\)

\(A=\frac{1}{73}\)

Vậy: \(A=\frac{1}{73}\)

29 tháng 4 2019

cho mik hỏi k kiểu j z