K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABH vuông tại H và ΔACH vuông tại H có

AB=AC

AH chung

=>ΔABH=ΔACH

b: HI//AB

=>góc IHA=góc BAH

=>góc IHA=góc IAH

=>ΔIAH cân tại I

c: Xét ΔBAC có

H là trung điểm của CB

HI//AB

=>I là trung điểm của AC

Bài 1 Cho tam giác DEF cân tại D với đường trung tuyến DIa/ Chứng minh :∆ DEI = ∆DFIb/ Các góc DIE và góc DIF là những góc gì ?c/ Biết DI = 12cm , EF = 10cm . Hãy tính độ dài cạnh DE.Bài 2Cho tam giác ABC vuông ở A, có ∠C = 300 , AHBC (H∈BC). Trên đoạn HC lấy điểm D sao cho HD = HB.Từ C kẻ CE ⊥ AD.Chứng minh :a)Tam giác ABD là tam giác đều .b)AH = CE.c)EH // AC .Bài 3  Cho ΔABC biết AB = 3cm, AC = 4cm, BC = 5cm....
Đọc tiếp

Bài 1 Cho tam giác DEF cân tại D với đường trung tuyến DI

a/ Chứng minh :∆ DEI = ∆DFI

b/ Các góc DIE và góc DIF là những góc gì ?

c/ Biết DI = 12cm , EF = 10cm . Hãy tính độ dài cạnh DE.

Bài 2

Cho tam giác ABC vuông ở A, có ∠C = 300 , AHBC (H∈BC). Trên đoạn HC lấy điểm D sao cho HD = H
B.Từ C kẻ CE ⊥ A
D.Chứng minh :

a)Tam giác ABD là tam giác đều .

b)AH = CE.

c)EH // AC .

Bài 3  Cho ΔABC biết AB = 3cm, AC = 4cm, BC = 5cm. Trên tia đối của tia AC lấy điểm D sao cho AD =AC

a. Chứng minh tam giác ABC vuông

b) Chứng minh ΔBCD cân

c)Gọi E là trung điểm của BD, CE cắt AB tại O. Tính OA, OC

Bài 4:

Cho ABC cân tại A,  vẽ AH vuông góc với BC tại H. Biết AB=5cm, BC= 6cm.

a) Chứng minh BH =HC.

b) Tính độ dài BH, AH.

c) Gọi G là trọng tâm của tam giác AB
C.Chứng minh rằng A, G, H thẳng hàng.

d) Chứng minh ∠ABG = ∠ACG

Bài 5(3,5 điểm)

Cho DABC có góc C = 900 ; BC = 3cm; CA = 4cm. Tia phân giác BK của góc ABC (K∈ CA); từ K kẻ KE ⊥ AB tại E.

a) Tính AB.

b) Chứng minh BC = BE.

c) Tia BC cắt tia EK tại M. So sánh KM và KE.

d) Chứng minh CE // MA

Bài 6:

Cho  ΔABC  vuông  tại  A, đường  phân  giác  BE. Kẻ  EH  vuông  góc  với  BC (H ∈ BC). Gọi K là giao điểm của AB và HE. Chứng minh rằng:

a) ΔABE = ΔHBE

b) BE là đường trung trực của đoạn thẳng AH.

c) EK = EC.

d) AE < EC.

Bài 7

Cho ABC cân tại A có AB = 5cm, BC = 6cm. Từ A kẻ đường vuông góc AH đến BC.

a. Chứng minh: BH = HC.

b. Tính độ dài đoạn AH.

c. Gọi G là trọng tâm Trên tia AG lấy điểm D sao cho AG = G
D.Tia CG cắt AB tại F. Chứng minh: BD = 2/3CF

d) Chứng minh: DB + DG > AB.

Bài 8

 Cho tam giác ABC vuông tại A. Trên tia đối của tia AB lấy điểm K sao cho BK = BC. Vẽ KH vuông góc với BC tại H và cắt AC tại E.

a) Vẽ hình và ghi GT – KL ?

b) KH = AC

c) BE là tia phân giác của góc ABC ?

d) AE < EC ?

Bài 9

Cho  ΔABC cân tại A, hai trung tuyến BM, CN cắt nhau tại K. Chứng minh :

a) ΔBNC =   ΔCMB

b) ΔBKC cân tại K

c) MN // BC

Bài 10  Cho ΔABC cân tại A. Gọi M là trung điểm của A
C.Trên tia đối của tia MB lấy điểm D sao cho DM = BM

a. Chứng minh ΔBMC = ΔDMA. Suy ra AD // BC.

b. Chứng minh ΔACD là tam giác cân.

c. Trên tia đối của tia CA lấy điểm E sao cho CA = CE. Chứng minh DC đi qua trung điểm I của BE.

Bài 11  Cho tam giác ABC cân tại A, đường cao AH. Biết AB = 10cm, BC = 12cm.

a) Chứng minh tam giác ABH bằng tam giác ACH.

b) Tính độ dài đoạn thẳng AH.

c) Gọi G là trọng tâm của tam giác AB
C.Chứng minh ba điểm A, G, H thẳng hàng.

0
27 tháng 1 2016

a1, Xét tam giác AMB và tam giác AMC có :

AM chung
B=C(tam giác ABC cân )

AB=AC9tam giác ABC cân)

Do đó tam giác AMB=tam giác AMC(c.g.c)

a2, Vì tam giác AMB=tam giác AMC( cmt)

=>Bam=Cam ( 2 góc tương ứng)

=>AM là tia p/g góc A

Mình ms làm xong câu a thôi đợi mình nghĩ nót câu kia đã. bạn tick nha mình đảm bảo đúng

27 tháng 1 2016

vẽ hình giúp

 

Câu 4. Cho tam giác ABC, đường phân giác AD (D thuộc BC), kẻ tia Dx song song với AB, tia Dx cắt AC tại E. Chứng minh tam giác ADE là tam giác cân.Câu 5. Cho tam giác ABC có AB = 6cm, AC = 8cm và BC = 10cm.a) Chứng tỏ tam giác ABC vuông.b) Kẻ phân giác BD và CE (D thuộc AC, E thuộc AB), BD và CE cắt nhau tại I. Tính góc BICCâu 6. Cho tam giác ABC vuông tại A, kẻ AH vuông góc với BC (H thuộc vẽ tia Bx song song với AH). Trên...
Đọc tiếp

Câu 4. Cho tam giác ABC, đường phân giác AD (D thuộc BC), kẻ tia Dx song song với AB, tia Dx cắt AC tại E. Chứng minh tam giác ADE là tam giác cân.

Câu 5. Cho tam giác ABC có AB = 6cm, AC = 8cm và BC = 10cm.

a) Chứng tỏ tam giác ABC vuông.

b) Kẻ phân giác BD và CE (D thuộc AC, E thuộc AB), BD và CE cắt nhau tại I. Tính góc BIC

Câu 6. Cho tam giác ABC vuông tại A, kẻ AH vuông góc với BC (H thuộc vẽ tia Bx song song với AH). Trên Bx lấy D sao cho BD = AH.

a) Chứng minh ΔAHB và ΔDHB bằng nhau.

b) Nếu AC = 12cm; BC =15cm. Tính độ dài DH.

Câu 7.  Cho tam giác ABC vuông tại B có góc B1=B; Â=60o, kẻ BH vuông góc với AC (H thuộc AC). Qua B kẻ đường thẳng d song song với AC.

a) Tính góc ABH.

b) Chứng minh đường thẳng d vuông góc với BH.

Câu 8.  Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm M. Trên tia đối của tia CB lấy điểm N sao cho BM = CN.

a) Chứng minh ΔAMN là tam giác cân.

b) Kẻ BH vuông góc với AM (H thuộc AM), CK vuông góc với AN (K thuộc AN). Chứng minh rằng BH = CK.

c) Gọi O là giao điểm của BH và CK. Chứng minh  ΔOBC cân.

d) Gọi D là trung điểm của BC. Chứng minh rằng A, D, O thẳng hàng.

Câu 9. Cho tam giác ABC, điểm D thuộc cạnh BC. Gọi M là trung điểm của AD. Trên tia đối của tia MB lấy điểm E sao cho ME = MB. Trên tia đối của tia MC lấy F sao cho MF = MC. Chứng minh:

a) AE = BD;

b) AF // BC.

c) Ba điểm A, E, F thẳng hàng.

Câu 10. Cho tam giác ABC cân tại A, M là trung điểm của BC.

a) Chứng minh góc AFE = gócABC⇒EF//BC và  ΔABM=ΔACM.

b) Chứng minh AM⊥BC.

c) Trên cạnh BA lấy  điểm E. Trên cạnh CA lấy điểm F sao cho BE = CF. Chứng minh ΔEBC và ΔFCB bằng nhau.

d) Chứng minh EF // BC.

 

0
9 tháng 5 2018

a) Xét ΔAHB và ΔAHC

Ta có: ∠AHB = ∠AHC = 900 (AH⊥BC)

          AB = AC ( ΔABC cân tại A)

          AH chung

nên ΔAHB = ΔAHC (cạnh huyền - cạnh góc vuông)

b) Ta có: BH = CH (ΔAHB = ΔAHC)

Mà H ∈ BC

nên H là trung điểm của BC

suy ra BH = \(\frac{1}{2}\)BC = \(\frac{1}{2}\)* 6 = 3cm

Xét  ΔAHB vuông tại H (AH⊥BC)

Có: AH2 + BH2 = AB2 (Định lý Py-ta-go)

mà BH = 3cm; AB = 5cm

nên AH2 + 32 = 52

suy ra AH = 4cm

Ta có hai đường trung tuyến BE và CD của ΔABC cắt nhau tại G

nên G là trọng tâm của ΔABC 

suy ra AG = \(\frac{2}{3}\)AH

mà AH = 4cm

nên AG = \(\frac{8}{3}\)cm

c) Có ΔABC cân tại A

mà AH là đường cao của ΔABC (AHBC)

nên AH là phân giác của ΔABC

suy ra BAH = CAH

Xét ΔABG và ΔACG

Có AB = AC (ΔABC cân tại A)

      ∠BAH = CAH (cmt)

       AG chung

nên ΔABG = ΔACG (c-g-c)

suy ra ABG = ACG (2 góc tương ứng)

Bài 3: Cho tam giác ABC (AB < AC). Gọi I là trung điểm của BC. Qua điểm I vẽ đường thẳng vuông góc với BC cắt tia phân giác của tại M.1.    Chứng minh MB = MC.2.    Kẻ MH vuông góc với đường thẳng AB, kẻ MK vuông góc với đường thẳng AC. Chứng minh MH = MK.3.    Chứng minh AC – AB = 2.KC.Bài 4: Cho △ABC cân tại A. Từ B và C kẻ đường thẳng vuông góc với AB và AC, chúng cắt nhau tại I.1.   ...
Đọc tiếp

Bài 3Cho tam giác ABC (AB < AC). Gọi I là trung điểm của BC. Qua điểm I vẽ đường thẳng vuông góc với BC cắt tia phân giác của tại M.

1.    Chứng minh MB = MC.

2.    Kẻ MH vuông góc với đường thẳng AB, kẻ MK vuông góc với đường thẳng AC. Chứng minh MH = MK.

3.    Chứng minh AC – AB = 2.KC.

Bài 4: Cho △ABC cân tại A. Từ B và C kẻ đường thẳng vuông góc với AB và AC, chúng cắt nhau tại I.

1.    Chứng minh IB = IC.

2.    Lấy M là trung điểm của AI. Chứng minh MB = MC.

3.    Chứng minh AI vuông góc với BC.

Bài 5Cho △ABC. Phân giác góc A và góc B cắt nhau tại I. Kẻ IM ⊥ AB (M∈AB), kẻ IN ⊥ BC (N∈BC), kẻ IQ ⊥ AC (Q∈ AC).

1.    Chứng minh △IMA = △IQA;

2.    Chứng minh IM = IN = IQ.

Bài 6Cho tam giác ABC vuông tại A. Tia phân giác của cắt AC tại D. Kẻ DK vuông góc với BC.

1.    Chứng minh DA = DK.

2.    Kẻ AH vuông góc với BC. Chứng minh tia AK là phân giác của .

Bài 10: Cho tam giác ABC, AH vuông góc với BC, AH = 12cm, AB = 15cm, CH = 16cm.

1.    Tính độ dài BH, AC.

2.    Tam giác ABC là tam giác vuông hay không? Vì sao?

giải nhanh giùm mk

0
Bài 9: (3,5 điểm) Cho tam giác ABC vuông tại A, lấy điểm m là trung điểm của BC. Vẽ MH AC (H thuộc AC). Trên tia HM lấy điểm K sao cho MK = MH.a) Chứng minh ΔMHC = ΔMKB rồi suy ra HKB= 90Chứng minh HK // AB và KB = AH.Chứng minh ΔMAC cân.Gọi G là giao điểm của AM và BH. Chứng minh GB + GC > 3GA.Bài 8: (3,5 điểm) Cho tam giác ABC cân tại A, kẻ AH vuông góc với BC tại H.Chứng minh rằng ΔAHB = ΔAHC.Gọi I là trung điểm...
Đọc tiếp

Bài 9: (3,5 điểm) Cho tam giác ABC vuông tại A, lấy điểm m là trung điểm của BC. Vẽ MH AC (H thuộc AC). Trên tia HM lấy điểm K sao cho MK = MH.
a) Chứng minh ΔMHC = ΔMKB rồi suy ra HKB= 90
Chứng minh HK // AB và KB = AH.
Chứng minh ΔMAC cân.
Gọi G là giao điểm của AM và BH. Chứng minh GB + GC > 3GA.
Bài 8: (3,5 điểm) Cho tam giác ABC cân tại A, kẻ AH vuông góc với BC tại H.
Chứng minh rằng ΔAHB = ΔAHC.
Gọi I là trung điểm của cạnh AH. Trên tia đối của tia IB, lấy điểm D sao cho IB = ID. Chứng minh IB = IC, từ đó suy ra AH + BD > AB + AC.
Trên cạnh CI, lấy điểm E sao cho CE 23 CI. Chứng minh ba điểm D, E, H thẳng hàn

Bài 5: Cho ΔABC cân tại A, A= 90. vẽ AH vuông góc với BC tại H.
a) Chứng minh: ΔABH = ΔACH
b) Cho biết AH = 4cm; BH = 3cm. Tính độ dài cạnh AB. 
c) Qua H, vẽ đường thẳng song song với AC cắt cạnh AB tại M. Gọi G là giao điểm của CM và AH. Chứng minh G là trọng tâm của ΔABC và tính độ dài cạnh AG.

(Vẽ hình giúp mk với nha mk cần gấp ạ)

0
27 tháng 2 2020

A B C E D H I

Xét tam giác BCD và tam giác CBE

có BC chung

góc CDB = góc CEB=900

góc EBC=góc DCB ( vì tam giác ABC cân tại A)

suy ra tam giác BCD = tam giác CBE ( cạnh huyền-góc nhọn)  (1)

b)  Từ (1) suy ra góc CBD=góc BCE ( hai góc tương ứng) (2)

Mà góc CBD + góc DBE= góc CBE  (3)

góc BCE+góc ECD = góc BCD  (4) 

góc EBC=góc DCB ( vì tam giác ABC cân tại A)  (5)

Từ (2), (3), (4) , (5) suy ra góc DCE=góc EBD

hay góc IBE = góc ICD

c) Từ (1) suy ra AE=AD (hai cạnh tương ứng)

Xét tam giác vuông ADI và tam giác vuông AEI có 

AI chung, AD=AE (CMT)

suy ra tam giá ADI = tam giác  AEI (cạnh huyền-cạnh góc vuông)

suy ra góc EAI = góc DAI (hai góc tương ứng)

suy ra AI là  tia phân giác của góc BAC

mà tam giác ABC cân tại A

suy ra AI là đường phân giác đồng thời là đường cao

AI vuông góc với BC tại H 

11 tháng 7 2018

a. AM là phân giác của tam giác ABC cân tại A => AM cũng là đường cao và đường phân giác trong ta giác ABC

=> góc EAM = góc FAM

=> Tam giác EAM = tam giác FAM (cạnh huyền - góc nhọn)

=> EA=FA và EM = FM (1)

TA có: AB =AC => AB - AE = AC - ÀF <=> BE = FC (2)

Và AM là đường trung tuyến của tam giác ABC => BM =MC (3)

Từ (1), (2), (3) => tam giác BEM = tam giác CFM (c-c-c)

11 tháng 7 2018

A E B F C D M

a, Xét t/g BEM và t/g CFM có:

góc BEM = góc CFM = 90 độ (gt)

MB = MC (gt)

góc B = góc C (gt)

=> t/g BEM = t/g CFM (cạnh huyền - góc nhọn)

b, Xét t/g AEM và t/g AFM có:

EM = FM (t/g BEM = t/g CFM)

góc AEM = góc AFM = 90 độ (gt)

AM chung

=> t/g AEM = t/ AFM (c.g.c)

=> AE = AF

=> tg/ AEF cân tại A

Mà AM là tia phân giác của t/g AEF

=> AM là đường trung trực của t/g AEF hay AM là đường trung trực của EF 

c, Vì t.g ABC cân tại A và AM là trung tuyến cuả BC

=> AM cũng là đường trung trực của BC (1)

=> góc AMB = 90 độ

Xét t/g DMB và t/g DMC có:

MB = MC (gt)

góc DMB = góc DMC = 90 độ (cmt)

DM chung

=> t/g DMB = t/g DMC (c.g.c)

=> DB = DC => D thuộc trung trực của BC

Mà MB = MC => M thuộc trung trực của BC

=> DM là trung trực của BC (2)

Từ (1) và (2) => A,D,M thẳng hàng