K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: Xét ΔOIA vuông tại I và ΔOIB vuông tại I có

OI chung

IA=IB

=>ΔOIA=ΔOIB

=>OA=OB

=>ΔOAB cân tại O

2: OA+AM=OM

OB+BN=ON

mà OA=OB và AM=BN

nên OM=ON

=>ΔOMN cân tại O

Xét ΔOMN có OA/OM=OB/ON

nên AB//MN

 

16 tháng 12 2019

Bạn có nhầm đề ko?? Trong hình ko có điểm D nào hết?!!

16 tháng 4 2020

a, Xét △OAC vuông tại A và △OBD vuông tại B

Có: OA = OB (gt)

    COA = DOB (2 góc đối đỉnh)

=> △OAC = △OBD (cgv-gnk)

b, Xét △OCE và △ODE cùng vuông tại O

Có: OE là cạnh chung

       OC = OD (△OAC = △OBD)

=> △OCE = △ODE (2cgv)

c, Ta có: DE = BE + BD  mà BD = AC (△OBD = △OAC)  ; CE = DE (△OCE = △ODE)

=> CE = BE + AC (đpcm)

ý AC = 1/2 BC còn có điều kiện gì nữa ko??

Bài 1. Cho tam giác ABC vuông tại A (AB < AC).Trên tia đối của tia AC lấy điểm D sao cho AD=AB. Trên tia đối của tia AB lấy điểm E sao cho AE= AC.a)Chứng minh : BC = DE. b)Chứng minh : tam giác ABD vuông cân và BD // CE. c)Kẻ đường cao AH của tam giác ABC tia AH cắt cạnh DE tại M. từ A kẻ đường vuông góc CMtại K, đường thẳng này cắt BC tại N . Chứng minh : NM // AB. d)Chứng minh : AM = DE/2. Bài 2: Cho tam...
Đọc tiếp

i 1. Cho tam giác ABC vuông tại A (AB < AC).Trên tia đối của tia AC lấy điểm D sao cho AD

=

AB. Trên tia đối của tia AB lấy điểm E sao cho AE

= AC.a)

Chứng minh : BC = DE.

 b)

Chứng minh : tam giác ABD vuông cân và BD // CE.

 c)

Kẻ đường cao AH của tam giác ABC tia AH cắt cạnh DE tại M. từ A kẻ đường vuông góc CMtại K, đường thẳng này cắt BC tại N . Chứng minh : NM // AB.

 d)

Chứng minh : AM = DE/2.

 

Bài 2:

 

Cho tam giác ABC vuông tại A; đường phân giác BE. Kẻ EH vuông góc với BC (H thuộc BC). Gọi K là giao điểm của AB và HE. Chứng minh:

 a) AB = HB b) BE vuông góc KC 

c) Dựng M và N sao cho KC là đường trung trực của AM và BC là đường trung trực của AN. Chứngminh M, H, N thẳng hàng

 Câu 3.

cho tam giác ABC vuông ở C, = 60 độ, tia pg của góc BAC cắt BC ở E,kẻ EK vuông góc vớiAB ,kẻ BD vuông góc với tia AE (D thuộc tia AE) Ac cắt BD tại F

 c/m :a) AC=AKb) AK =KB

c) ba điểm F,E,K thằng hàng.

 

i 4. Cho tam giác ABC, M là trung điểm của BC. Kẻ đường cao AH. Trên tia đổi của tia MA lấyđiểm D sao cho MA=MD. Trên tia đối của tia HA lấy điểm E sao cho HE= HA.

 

a, CMR 2 tam giác AMB và DMC bằng nhau và AB//CD

 b, CMR BE=CD

c, Gọi I là giao điểm của BE và CD. CMR tam giác BIC cân tại I.

 

0

Bài 1) 

a) Xét ∆ vuông ABK và ∆ vuông EBK ta có : 

AK = KC 

BK chung 

=> ∆ABK = ∆EBK ( ch-cgv)

=> AB = BE

=> ∆ABE cân tại B 

Mà ABK = EBK 

Hay BK là phân giác ABE 

=> ∆ABE cân có BK là phân giác 

=> BK là trung tuyến đồng thời là đường cao

=> BK\(\perp\)AE

b) Gọi H là giao điểm BK và DC 

Xét ∆ vuông AKD và ∆ vuông EKC ta có

AK = KE 

AKD = EKC ( đối đỉnh) 

=> ∆AKD = ∆EKC ( cgv-gn)

=> AD = EC ( tương ứng) 

Mà ∆ABE cân tại B (cmt)

=> AB = AE 

Mà AB + AD = BD 

BE + EC = BC 

=> BD = BC 

=> ∆BDC cân tại B 

=> BDC = \(\frac{180°-B}{2}\)

Vì ∆ABE cân tại B 

=> BAE = \(\frac{180°-B}{2}\)

=> BAE = BDC

Mà 2 góc này ở vị trí đồng vị 

=> AE//DC 

Vì H là giao điểm DC và BK

=> BH là phân giác DBC 

Mà ∆BDC cân tại B (cmt)

=> BK đồng thời là trung tuyến và đường cao

=> BH \(\perp\)DC

Hay BK \(\perp\)DC 

Bài 2)

Vì ∆ABC cân tại A

=> AB = AC 

=> ABC = ACB 

Xét ∆ vuông ABK và ∆ vuông ACE ta có : 

AB = AC 

A chung 

=> ∆ABK = ∆ACE ( ch-gn)

=> ABK = ACE ( tương ứng) 

Xét ∆AOB và ∆AOC ta có : 

AB = AC 

ABK = ACE 

AO chung

=> ∆AOB = ∆AOC (c.g.c)

=> BAO = CAO 

Hay AO là phân giác BAC 

b) Vì ∆AKB = ∆AEC (cmt)

=> AE = AK 

Mà AB = AC 

=>EB = KC

Xét ∆ vuông KOC và ∆ vuông EOB ta có 

EB = KC 

EOB = KOC ( đối đỉnh) 

=> ∆KOC = ∆EOB ( cgv-gn)

=> OB = OC 

=> ∆OBC cân tại O 

c) Xét ∆ cân ABC ta có :

AO là phân giác BAC 

AI là trung tuyến BC 

=> AI đồng thời là phân giác và là đường cao

=> A , O , I thẳng hàng

27 tháng 2 2020

a, xét tam giác OCA và tam giác ODB có: góc O chung

OB = OA (Gt)

góc OBD = góc OAC = 90 

=> tam giác OCA = tam giác ODB (cgv-gnk)

=> OC = OD (Đn)

=> tam giác OCD cân tại O (đn)

+ OC = OD (cmt)

OA = OB (gt)

OA + AD = OD

OB + BC = OC 

=> BC = AD 

xét tam giác BIC và tam giác AID có : 

góc BCI = góc IDA do tam giác OCA  = tam giác ODB (cmt)

góc CBI = góc DAI = 90

=> tam giác BIC = tma giác AID (cgv-gnk)

=> IC = ID (đn)

=> tam giác ICD cân tại I (đn)

b. xét tam giác ODC có : 

CA _|_ OD 

DB _|_ OC 

BD cắt CA tại I

=> OI _|_ DC (đl)

Bài 4: Cho O thuộc đường thẳng AB. Trên cùng một nửa mp bờ AB vẽ các tia OM, ON sao cho AONˆ = BONˆ = 50o. Vẽ tia phân giác của góc MON. Hỏi:a) Hai tia OM, ON có vuông góc với nhau hay không?b) CMR: OC⊥AB.Bài 6: Trên đường thẳng a liên tiếp lấy 5 điểm A, B, C, D, E sao cho AB=BC=CD=DE. Qua C hãy vẽ đường thẳng b⊥a. Hỏi đường thẳng b là đường trung trực của những đường thẳng nào?Bài 7: Cho hai...
Đọc tiếp

Bài 4: Cho O thuộc đường thẳng AB. Trên cùng một nửa mp bờ AB vẽ các tia OM, ON sao cho AONˆ = BONˆ = 50o. Vẽ tia phân giác của góc MON. Hỏi:
a) Hai tia OM, ON có vuông góc với nhau hay không?
b) CMR: OCAB.
Bài 6: Trên đường thẳng a liên tiếp lấy 5 điểm A, B, C, D, E sao cho AB=BC=CD=DE. Qua C hãy vẽ đường thẳng ba. Hỏi đường thẳng b là đường trung trực của những đường thẳng nào?
Bài 7: Cho hai góc kề bù xOyˆ và yOzˆ. Gọi Om là tia phân giác của góc xOy, vẽ tia OmOn. CMR On là tia phân giác của góc xOy.
Bài 8: Trong hình vẽ cho AB // CI. OABˆ = 50oOCIˆ = 40o. CMR OAOC
Bài 9: Cho góc xOy là góc tù; trong góc này vẽ các tia Om, On sao cho OxOnOyOm. CMR: góc xOy và góc MOn có chung tia phân giác
Bài 10: Cho góc bẹt AOB. Trên cùng nửa mp bờ AB vẽ các tia OC và OD sao cho AOCˆ = BODˆ = 135o. Gọi OE là tia đối của tia OD. CMR:
a) OEOC
b) OB là tia phân giác của góc COE.

0