Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn đăng nhiều quá nhưng mình chỉ biết phần \(\text{phân tích đa thức thành nhân tử}\) thôi
\(x^2+2x-3\)
\(\text{phân tích đa thức thành nhân tử}\)
\(\left(x-1\right)\left(x+3\right)\)
\(x^2-10x+9\)
\(\text{phân tích đa thức thành nhân tử}\)
\(\left(x-9\right)\left(x-1\right)\)
\(x^2-2x-15\)
\(\text{phân tích đa thức thành nhân tử}\)
\(\left(x-5\right)\left(x+3\right)\)
\(x^2-2x-48\)
\(\text{phân tích đa thức thành nhân tử}\)
\(\left(x-8\right)\left(x+6\right)\)
\(x^2-10x+24\)
\(\text{phân tích đa thức thành nhân tử}\)
\(\left(x-6\right)\left(x-4\right)\)
\(4x^2+4x-15\)
\(\text{phân tích đa thức thành nhân tử}\)
\(\left(2x-3\right)\left(2x+5\right)\)
\(3x^2-7x+2\)
\(\text{phân tích đa thức thành nhân tử}\)
\(\left(x-2\right)\left(3x-1\right)\)
\(4x^2-5x+1\)
\(\text{phân tích đa thức thành nhân tử}\)
\(\left(x-1\right)\left(4x-1\right)\)
Bài 1: CMR các đa thức sau luôn dương vs mọi giá trị biến số:
a) x^2 + x +1
b) x^2 + 3x+3
c) x^2 + y^2 + 2(x-2y) +6
d) 2x^2 + y^2 + 2x( y-1) +2
Bài 2: Phân tích thành nhân tử:
a) x^2 + 2x-3
b) x^2 - 10x +9
c) x^2 - 2x -15
d) x^2 - 2x -48
e) x^2 - 10x+24
f)4x^2 + 4x -15
g) 3x^2 - 7x +2
h) 4x^2 - 5x +1
Bài 3: Tìm x biết :
a) x^2 +5x+6=0
b) x^2 - 10x + 16=0
c) x^2 - 10x +21=0
d) x^2 - 2x -3 =0
e) 2x^2 + 7x +3=0
f) x^2 - x- 6=0
Bài 4:
a)x^3 + 2x^2 - 3=0
b) x^3 - 7x -6=0
c) x^3 + x^2 +4=0
d) x^3 - 2x^2 - x+2 =0
Bạn đăng nhiều quá nhưng mình chỉ biết phần phân tích đa thức thành nhân tử thôi
x2+2x−3
phân tích đa thức thành nhân tử
(x−1)(x+3)
x2−10x+9
phân tích đa thức thành nhân tử
(x−9)(x−1)
x2−2x−15
phân tích đa thức thành nhân tử
(x−5)(x+3)
x2−2x−48
phân tích đa thức thành nhân tử
(x−8)(x+6)
x2−10x+24
phân tích đa thức thành nhân tử
(x−6)(x−4)
4x2+4x−15
phân tích đa thức thành nhân tử
(2x−3)(2x+5)
3x2−7x+2
phân tích đa thức thành nhân tử
(x−2)(3x−1)
4x2−5x+1
phân tích đa thức thành nhân tử
(x−1)(4x−1)
dài quá !
\(2x^2-7x+5=0\)
\(2x^2-2x-5x+5=0\)
\(2x\left(x-1\right)-5\left(x-1\right)=0\)
\(\left(x-1\right)\left(2x-5\right)=0\)
\(\left[\begin{array}{nghiempt}x-1=0\\2x-5=0\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=1\\2x=5\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=1\\x=\frac{5}{2}\end{array}\right.\)
\(x\left(2x-5\right)-4x+10=0\)
\(x\left(2x-5\right)-2\left(2x-5\right)=0\)
\(\left(2x-5\right)\left(x-2\right)=0\)
\(\left[\begin{array}{nghiempt}x-2=0\\2x-5=0\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=2\\2x=5\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=2\\x=\frac{5}{2}\end{array}\right.\)
\(\left(x-5\right)\left(x+5\right)-x\left(x-2\right)=15\)
\(x^2-25-x^2+2x=15\)
\(2x=15+25\)
\(2x=40\)
\(x=\frac{40}{2}\)
\(x=20\)
\(x^2\left(2x-3\right)-12+8x=0\)
\(x^2\left(2x-3\right)+4\left(2x-3\right)=0\)
\(\left(2x-3\right)\left(x^2+4\right)=0\)
\(2x-3=0\) (vì \(x^2\ge0\Rightarrow x^2+4\ge4>0\))
\(2x=3\)
\(x=\frac{3}{2}\)
\(x\left(x-1\right)+5x-5=0\)
\(x\left(x-1\right)+5\left(x-1\right)=0\)
\(\left(x-1\right)\left(x+5\right)=0\)
\(\left[\begin{array}{nghiempt}x-1=0\\x+5=0\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=1\\x=-5\end{array}\right.\)
\(\left(2x-3\right)^2-4x\left(x-1\right)=5\)
\(4x^2-12x+9-4x^2+4x=5\)
\(-8x=5-9\)
\(-8x=-4\)
\(x=\frac{4}{8}\)
\(x=\frac{1}{2}\)
\(x\left(5-2x\right)+2x\left(x-1\right)=13\)
\(5x-2x^2+2x^2-2x=13\)
\(3x=13\)
\(x=\frac{13}{3}\)
\(2\left(x+5\right)\left(2x-5\right)+\left(x-1\right)\left(5-2x\right)=0\)
\(\left(2x+10\right)\left(2x-5\right)-\left(x-1\right)\left(2x-5\right)=0\)
\(\left(2x-5\right)\left(2x+10-x+1\right)=0\)
\(\left(2x-5\right)\left(x+11\right)=0\)
\(\left[\begin{array}{nghiempt}2x-5=0\\x+11=0\end{array}\right.\)
\(\left[\begin{array}{nghiempt}2x=5\\x=-11\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=\frac{5}{2}\\x=-11\end{array}\right.\)
1) 2x(x + 1) - x2(x + 2) + x3 - x + 4 = 0
<=> 2x.x + 2x.1 + (-x2).x + (-x2).2 + x3 - x + 4 = 0
<=> 2x2 + 2x - x3 - 2x2 + x3 - x = 0 - 4
<=> x = -4
=> x = -4
2) xem lại đề rồi chúng mình nói chuyện cậu nha :))
3) tương tự (mình hơi lười, thông cảm :v)
3, [(3x - 5)(7 - 5x)] - [(5x + 2)(2 - 3x)] = 4
<=> ( 21x -15x^2 -35 +25x) - (10x -15x^2 + 4-6x)=4
<=> 21x -15x^2 -35 +25x- 10x + 15x^2 - 4+6x =4
<=> 42x - 39 =4
<=> 42x = 43
<=< x =43/42
2, (3x - 2)(4x - 5 ) - (2x - 1)(6x + 2) = 0
12x2- 15x - 8x + 10 - 12x2 - 4x + 6x + 2 = 0
- 21x = -12
x = 4/7
1, đã có người giải
`Answer:`
Bài 1:
a) \(7+2x=22-3x\)
\(\Leftrightarrow2x+3x=22-7\)
\(\Leftrightarrow5x=15\)
\(\Leftrightarrow x=3\)
b) \(8x-3=5x+12\)
\(\Leftrightarrow8x-5x=12+3\)
\(\Leftrightarrow3x=15\)
\(\Leftrightarrow x=5\)
c) \(x-12+4x=25+2x-1\)
\(\Leftrightarrow x-12+4x-25-2x+1=0\)
\(\Leftrightarrow\left(x+4x-2x\right)+\left(1-12-25\right)=0\)
\(\Leftrightarrow3x-36=0\)
\(\Leftrightarrow x=12\)
d) \(x+2x+3x-19=3x+5\)
\(\Leftrightarrow6x-19=3x+5\)
\(\Leftrightarrow6x-3x=5+19\)
\(\Leftrightarrow3x=24\)
\(\Leftrightarrow x=8\)
Bài 2:
a) \(\left(2,3x-6,9\right)\left(0,1x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2,3x-6,9=0\\0,1x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-20\end{cases}}}\)
b) \(\left(2x+7\right)\left(x-5\right)\left(5x+1\right)=0\)
\(\Leftrightarrow2x+7=0\text{ hoặc }x-5=0\text{ hoặc }5x+1=0\)
\(\Leftrightarrow x=-\frac{7}{2}\text{ hoặc }x=5\text{ hoặc }x=-\frac{1}{5}\)
c) \(\left(4x+2\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}4x+2=0\\x^2+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x^2=-1\text{(Loại)}\end{cases}}}\)
d) \(\left(x^2-4\right)+\left(x-2\right)\left(3-2x\right)=0\)
\(\Leftrightarrow x^2-4+\left(3x-2x^2-6+4x\right)=0\)
\(\Leftrightarrow x^2-4=\left(-2x^2+7x-6\right)=0\)
\(\Leftrightarrow x^2-4-2x^2+7x-6=0\)
\(\Leftrightarrow-x^2+7x-10=0\)
\(\Leftrightarrow x^2-5x-2x+10=0\)
\(\Leftrightarrow x.\left(x-5\right)-2.\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-5\right).\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-5=0\\x-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=5\\x=2\end{cases}}}\)
a,x^2+2x=15
<=>x^2+2x-15=0
<=>x^2+5x-3x-15=0
<=>x(x+5)-3(x+5)=0 <=>(x-3)(x+5)=0
<=>\(\orbr{\begin{cases}x-3=0\\x+5=0\end{cases}}\)<=>\(\orbr{\begin{cases}x=3\\x=-5\end{cases}}\)
Vậy x=3,x=-5
mik lm tạm câu a nhé
a) \(x^2+2x=15\)\(\Leftrightarrow x^2+2x-15=0\)
\(\Leftrightarrow\left(x^2+3x\right)-\left(5x+15\right)=0\)\(\Leftrightarrow x\left(x+3\right)-5\left(x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x-5\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}x+3=0\\x-5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-3\\x=5\end{cases}}\)
Vậy tập nghiệm của phương trình là: \(S=\left\{-3;5\right\}\)
b) \(2x^3-2x^2=4x\)\(\Leftrightarrow2x^3-2x^2-4x=0\)
\(\Leftrightarrow2x\left(x^2-x-2\right)=0\)\(\Leftrightarrow2x\left[\left(x^2-2x\right)+\left(x-2\right)\right]=0\)
\(\Leftrightarrow2x\left[x\left(x-2\right)+\left(x-2\right)\right]=0\)\(\Leftrightarrow2x\left(x+1\right)\left(x-2\right)=0\)
\(\Leftrightarrow x=0\)hoặc \(x+1=0\)hoặc \(x-2=0\)
\(\Leftrightarrow x=0\)hoặc \(=-1\)hoặc \(x=2\)
Vậy tập nghiệm của phương trình là \(S=\left\{-1;0;2\right\}\)
a) x(x-1) - (x+1)(x+2) = 0
x\(^2\)- x -x\(^{^2}\)-2x +x+2=0
-2x+2=0
-2x=0+2
-2x=2
x=-1
Vậy x bằng -1
1) \(2\left(x+2\right)-\left(3x+1\right)\left(x+2\right)=0\)
\(\left(x+2\right)\left(2-3x-1\right)=0\)
\(\left(x+2\right)\left(1-3x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+2=0\\1-3x=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-2\\x=\frac{1}{3}\end{cases}}}\)
2) \(3x\left(x-3\right)-\left(2x-6\right)=0\)
\(3x\left(x-3\right)-2\left(x-3\right)=0\)
\(\left(x-3\right)\left(3x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\3x-2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=3\\x=\frac{2}{3}\end{cases}}}\)
3) \(\left(2x-1\right)^2=\left(3x-5\right)^2\)
\(\left(2x-1\right)^2-\left(3x-5\right)^2=0\)
\(\left(2x-1-3x+5\right)\left(2x-1+3x-5\right)=0\)
\(\left(4-x\right)\left(5x-6\right)=0\)
\(\Rightarrow\orbr{\begin{cases}4-x=0\\5x-6=0\end{cases}\Rightarrow\orbr{\begin{cases}x=4\\x=\frac{6}{5}\end{cases}}}\)
4) \(\left(4x+3\right)\left(x-1\right)=x^2-1\)
\(\left(4x+3\right)\left(x-1\right)=\left(x+1\right)\left(x-1\right)\)
\(\left(4x+3\right)\left(x-1\right)-\left(x+1\right)\left(x-1\right)=0\)
\(\left(x-1\right)\left(4x+3-x-1\right)=0\)
\(\left(x-1\right)\left(3x+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-1=0\\3x+2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\x=\frac{-2}{3}\end{cases}}}\)
5) \(6-4x-\left(2x-3\right)\left(x-3\right)=0\)
\(-2\left(2x-3\right)-\left(2x-3\right)\left(x-3\right)=0\)
\(\left(2x-3\right)\left(-2-x+3\right)=0\)
\(\left(2x-3\right)\left(1-x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x-3=0\\1-x=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{3}{2}\\x=1\end{cases}}}\)
6) \(2x^2-5x-7=0\)
\(2x^2+2x-7x-7=0\)
\(2x\left(x+1\right)-7\left(x+1\right)=0\)
\(\left(x+1\right)\left(2x-7\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+1=0\\2x-7=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-1\\x=\frac{7}{2}\end{cases}}}\)
7) \(x^2-x-12=0\)
\(x^2+3x-4x-12=0\)
\(x\left(x+3\right)-4\left(x+3\right)\)
\(\left(x+3\right)\left(x-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+3=0\\x-4=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-3\\x=4\end{cases}}}\)
8) \(3x^2+14x-5=0\)
\(3x^2+15x-x-5=0\)
\(3x\left(x+5\right)-\left(x+5\right)=0\)
\(\left(x+5\right)\left(3x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+5=0\\3x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-5\\x=\frac{1}{3}\end{cases}}}\)
a, \(2x\left(x-3\right)-15+5x=0\\ \Rightarrow2x\left(x-3\right)-\left(15-5x\right)=0\\ \Rightarrow2x\left(x-3\right)-5\left(3-x\right)=0\\ \Rightarrow\left(2x+5\right)\left(x-3\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{5}{2}\\x=3\end{matrix}\right.\)
b, \(x^3-7x=0\\ \Rightarrow x\left(x^2-7\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\x=\pm7\end{matrix}\right.\)
c, \(\left(2x-3\right)^2-\left(x+5\right)^2=0\\ \Rightarrow\left(2x-3-x-5\right)\left(2x-3+x+5\right)=0\\ \Rightarrow\left(x-8\right)\left(3x+2\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=8\\x=-\dfrac{2}{3}\end{matrix}\right.\)
Xem lại đề câu d