Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1
B A H C M D
a) Xét \(\Delta\)ABC:AB2+AC2=9+16=25=BC2=>\(\Delta\)ABC vuông tại A
b) Xét \(\Delta\)ABH và\(\Delta\)DBH:
BAH=BDH=90
BH chung
AB=DB
=>\(\Delta\)ABH=\(\Delta\)DBH(cạnh huyền-cạnh góc vuông)=>ABH=DBH=>BH là tia phân giác góc ABC
c) Áp dụng Định lý sau:"trong một tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền"cho tam giác vuông ABC, ta có:AM=1/2BC=CM
Suy ra \(\Delta\)AMC cân tại M
2.
C B A H
a) Áp dụng Định lý Pythagoras cho tam giác vuông ABH, ta có:
AB2=BH2+AH2=22+42=>AB=\(\sqrt{20}\)cm
Áp dụng Định lý Pythagoras cho tam giác vuông ACH, ta có:
AC2=AH2+CH2=42+82=>AC=\(\sqrt{80}\)cm
b) Xét \(\Delta\)ABC:AB<AC(Suy ra trực tiếp từ kết quả câu a)
Suy ra: B>C (Định lý về cạnh và góc đối diện trong tam giác)
4:
a: Xet ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
=>ΔAMB=ΔAMC
b: Xet ΔAEM vuông tại E và ΔAFM vuông tại F có
AM chung
góc EAM=góc FAM
=>ΔAEM=ΔAFM
=>AE=AF
c: AE=AF
ME=MF
=>AM là trung trực của EF
mà K nằm trên trung trực của EF
nên A,M,K thẳng hàng
Bài 1)
a) Xét ∆ vuông ABK và ∆ vuông EBK ta có :
AK = KC
BK chung
=> ∆ABK = ∆EBK ( ch-cgv)
=> AB = BE
=> ∆ABE cân tại B
Mà ABK = EBK
Hay BK là phân giác ABE
=> ∆ABE cân có BK là phân giác
=> BK là trung tuyến đồng thời là đường cao
=> BK\(\perp\)AE
b) Gọi H là giao điểm BK và DC
Xét ∆ vuông AKD và ∆ vuông EKC ta có
AK = KE
AKD = EKC ( đối đỉnh)
=> ∆AKD = ∆EKC ( cgv-gn)
=> AD = EC ( tương ứng)
Mà ∆ABE cân tại B (cmt)
=> AB = AE
Mà AB + AD = BD
BE + EC = BC
=> BD = BC
=> ∆BDC cân tại B
=> BDC = \(\frac{180°-B}{2}\)
Vì ∆ABE cân tại B
=> BAE = \(\frac{180°-B}{2}\)
=> BAE = BDC
Mà 2 góc này ở vị trí đồng vị
=> AE//DC
Vì H là giao điểm DC và BK
=> BH là phân giác DBC
Mà ∆BDC cân tại B (cmt)
=> BK đồng thời là trung tuyến và đường cao
=> BH \(\perp\)DC
Hay BK \(\perp\)DC
Bài 2)
Vì ∆ABC cân tại A
=> AB = AC
=> ABC = ACB
Xét ∆ vuông ABK và ∆ vuông ACE ta có :
AB = AC
A chung
=> ∆ABK = ∆ACE ( ch-gn)
=> ABK = ACE ( tương ứng)
Xét ∆AOB và ∆AOC ta có :
AB = AC
ABK = ACE
AO chung
=> ∆AOB = ∆AOC (c.g.c)
=> BAO = CAO
Hay AO là phân giác BAC
b) Vì ∆AKB = ∆AEC (cmt)
=> AE = AK
Mà AB = AC
=>EB = KC
Xét ∆ vuông KOC và ∆ vuông EOB ta có
EB = KC
EOB = KOC ( đối đỉnh)
=> ∆KOC = ∆EOB ( cgv-gn)
=> OB = OC
=> ∆OBC cân tại O
c) Xét ∆ cân ABC ta có :
AO là phân giác BAC
AI là trung tuyến BC
=> AI đồng thời là phân giác và là đường cao
=> A , O , I thẳng hàng
b: Xét ΔABK và ΔEBK có
BA=BE
\(\widehat{ABK}=\widehat{EBK}\)
BK chung
Do đó: ΔABK=ΔEBK
Suy ra: KA=KE
a: Xét ΔABK và ΔEBK có
BA=BE
\(\widehat{ABK}=\widehat{EBK}\)
BK chung
Do đó: ΔABK=ΔEBK
Suy ra: KA=KE
Bạn ơi giúp mình giải hết bài này đc ko
cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE=BA.Tia phân giác của góc B cắt AC tại K.
a) So sánh AK và KE.
b) Chứng minh EK vuông góc BC.
c) Chứng minh: BK là đường trung trực của đoạn thẳng AE
C1 :
Hình : tự vẽ
a )Vì CA=CB ( đề bài cho ) => tam giác ABC cân tại C
mà CI vuông góc vs AB => CI là đường cao của tam giác ABC
=> CI cũng là đường trung tuyến của tam giác ABC ( t/c tam giác cân )
=> IA=IB (đpcm)
C1 :
b) Có IA=IB ( cm phần a )
mà IA+IB = AB
IA + IA = 12 (cm)
=> IA = \(\frac{12}{2}=6\left(cm\right)\)
Xét tam giác vuông CIA có : CI2 + IA2 = CA2 ( Đ/l Py-ta -go )
CI2 + 62 = 102
CI2 = 102 - 62 = 64
=> CI = \(\sqrt{64}=8\left(cm\right)\)
Vậy CI ( hay IC ) = 8cm
Answer:
Bài 1:
Vì AB = AC nên tam giác ABC cân tại A
=> Góc ABC = góc ACB = (180 độ - góc BAC) : 2 = 30 độ
Ta gọi DF là trung trực của AC
=> DF vuông góc AC = F; FC = FA
Mà DF là trung trực của AC
=> Góc ADA = 2 góc CDF = 2 . (180 độ - góc DCF - góc CFD) = 120 độ
Xét tam giác ACE và tam giác BAD:
BD = AE
AC = AB
Góc EAC = góc DBA = 30 độ
=> Tam giác ACE = tam giác BAD (c.g.c)
=> Góc CED = góc ADB = góc EDC = 180 độ - góc CDA = 60 độ
Bài 2:
Có: IK là trung trực của BC
=> IB = IC
Tương tự ID = IA mà AB = CD
=> Tam giác IAB = tam giác IDC (c.c.c)
=> Góc IAB = góc IDA = góc IAC
=> AI là tia phân giác của góc BAD
Mà AI là tia phân giác của góc A
IE vuông góc AB; IH vuông góc AC
=> IE = IH
\(\Rightarrow BE^2=IB^2-IE^2=IC^2-IH^2=HC^2\)
=> BE = HC
Mà IE = IH; góc IEA = góc IHA = 90 độ; góc EAI = góc IAH
=> Tam giác AEI = tam giác AHI (g.c.g)
=> AE = AH mà IE = IH
=> IA là trung trực của EH
Có: CF song song AB nên góc FHC = góc AHE = góc AEH = góc HFC
=> Tam giác CHF cân ở C
=> CF = CH
=> CF = BE
Mà KB = KC; góc EBK = góc KCF
=> Tam giác BKE = tam giác CKF (c.g.c)
=> Góc BKE = góc FKC
=> E, F, K thẳng hàng
Bài 1:
Bài 2: