Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Đường thẳng d có một vectơ pháp tuyến là n → = ( - 2 ; - 5 ) nên đường thẳng này có 1 VTCP là: n → = 5 ; - 2
Do đường thẳng d và ∆ song song với nhau nên vecto n → = ( 5 ; - 2 ) cũng là VTCP của đường thẳng ∆.
Đáp án A
Đường thẳng ( d) có VTCP là u → = ( 3 ; - 4 )
Nên đường thẳng (d) có 1 VTPT là ( 4; 3) .
Do 2 đườg thẳng ∆ và (d) song song với nhau nên chúng có cùng VTPT và cùng VTCP .
Suy ra đường thẳng ∆ có 1 VTPT là (4; 3) .
Lưu ý: Nếu 2 đường thẳng vuông góc với nhau thì vecto chỉ phương của đường thẳng này là vecto pháp tuyến của đường thẳng kia và ngược lại
22/ \(\left(d\right)\perp\left(\Delta\right)\Rightarrow\overrightarrow{u_d}=\overrightarrow{n_{\Delta}}=\left(3;-4\right)\)
23/ \(\left(d\right)\perp\left(\Delta\right)\Rightarrow\overrightarrow{n_d}=\overrightarrow{u_{\Delta}}=\left(-2;-5\right)\)
Đáp án A
Do hai đường thẳng vuông góc với nhau thì VTPT của đường thẳng này là VTCP của đường thẳng kia và ngược lại.
Do đường thẳng ∆ vuông góc với đường thẳng (d) nên nhận VTPT của đường thẳng ( d) là VTCP. Do đó: một VTCP của đường thẳng ∆ là ( 2; -1)
Đáp án: C
Phương trình tổng quát của đường thẳng d đi qua M(2;-3) và nhận n → = 3 ; - 2 làm vecto pháp tuyến có dạng:
3(x - 2) - 2(y + 3) = 0 ⇔ 3x - 2y - 12 = 0
Chọn C.
Đường thẳng Δ vuông góc với d nhận VTPT của d là VTCP
Đáp án B
Ta có nhận xét:
Hai đường thẳng vuông góc với nhau thì VTPT của đường thẳng này là VTCP của đường thẳng kia và ngược lại.
Do đường thẳng ∆ vuông góc với đường thẳng (d) nên nhận VTCP của đường thẳng (d) là VTPT. Do đó: 1 VTPT của đường thẳng ∆ là ( -2; -3).
Mà hai vectơ (-2; -3) và ( 4; 6) là 2 vectơ cùng phương nên vectơ (4; 6) cũng là VTPT của đường thẳng ∆.
a, (2;5)
b, (4;3)
c, (5; - 2)
xin cách giải