K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2018

c)  \(VT=\left(a+b+c\right)^3-a^3-b^3-c^3\)

\(=\left(a+b\right)^3+3c\left(a+b\right)\left(a+b+c\right)+c^3-a^3-b^3-c^3\)

\(=a^3+b^3+c^3+3ab\left(a+b\right)+3c\left(a+b\right)\left(a+b+c\right)-a^3-b^3-c^3\)

\(=3\left(a+b\right)\left[ab+c\left(a+b+c\right)\right]\)

\(=3\left(a+b\right)\left(ab+ac+bc+c^2\right)\)

\(=3\left(a+b\right)\left(b+c\right)\left(c+a\right)=VP\)

d)  \(VT=a^3+b^3+c^3-3abc\)

\(=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)

\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=VP\)

I don't now

...............

.................

14 tháng 4 2020

Mình có 3 HĐT nâng cao cho bạn áp dụng vào bài toán :

\(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\)

\(\left(a+b-c\right)^2=a^2+b^2+c^2+2ab-2bc-2ac\)

\(\left(a-b+c\right)^2=a^2+b^2+c^2-2ab-2bc+2ac\)

15 tháng 8 2018

a) \(A=100^2-99^2+98^2-97^2+...+2^2-1^2\)

        \(=\left(100-99\right)\left(100+99\right)+\left(98-97\right)\left(98+97\right)+...+\left(2-1\right)\left(2+1\right)\)

         \(=100+99+98+97+...+2+1\)

           \(=\frac{\left(1+100\right).100}{2}=5050\)

b) \(B=3\left(2^2+1\right)\left(2^4+1\right)...\left(2^{64}+1\right)+1\)

        \(=\left(4-1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{64}+1\right)+1\)

         \(=\left[\left(2^2-1\right)\left(2^2+1\right)\right]\left(2^4+1\right)...\left(2^{64}+1\right)+1\)

          \(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right).....\left(2^{64}+1\right)+1\)

Cứ tương tự như thế ......

    \(B=2^{128}-1+1=2^{128}\)

c) \(C=\left(a+b+c\right)^2+\left(a+b-c\right)^2-2\left(a+b\right)^2\)

        \(=a^2+b^2+c^2+2ab+2bc+2ac+a^2+b^2+c^2+2ab-2bc-2ac-2\left(a^2+2ab+b^2\right)\)

         \(=2a^2+2b^2+2c^2+4ab-2a^2-4ab-2b^2\)

          \(=2c^2\)

Vậy C = 2c2

  

18 tháng 9 2018

\(\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)

\(=\left(a+b+c\right)\left(ab+bc\right)+\left(a+b+c\right)ac-abc\)

\(=\left(ab+b^2+bc\right)\left(a+c\right)+\left(a+c\right)ac+abc-abc\)

\(=\left(a+c\right)\left(ab+b^2+bc+ac\right)\)

\(=\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

5 tháng 2 2016

a b

vì tổng của 3 gốc bằng 180

nên 180>0

 

vậy thôi

Bài làm :

 Bình phương hai vế của a + b + c = 0 ta được :

\(a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)

\(\Leftrightarrow a^2+b^2+c^2=-2\left(ab+bc+ca\right)\)   ( 1 )

Bình phương hai vế của ( 1 ) ta được :

\(a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)\)

\(=4\left[a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)\right]\)

\(=4\left(a^2b^2+b^2c^2+c^2a^2\right)\)  ( vì a + b + c = 0 nên 2abc . 0 = 0 )

=> đpcm 

Phần còn lại tương tự bạn tự làm nhé

Học tốt

22 tháng 9 2020

Ta có :

\(a+b+c=0\)

\(\Leftrightarrow\left(a+b+c\right)^2=0\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)( 1 )

\(\Leftrightarrow a^2+b^2+c^2=-2\left(ab+bc+ca\right)\)

\(\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=4\left[a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)\right]\)

\(\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=4\left(a^2b^2+b^2c^2+c^2a^2\right)\)( 2 )

\(\Leftrightarrow a^4+b^4+c^4=2\left(a^2b^2+b^2c^2+c^2a^2\right)\)( 3 )

Ta lại có : 

\(\left(ab+bc+ca\right)^2\)

\(=a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)\)

\(=a^2b^2+b^2c^2+c^2a^2+2abc.0\)

\(=a^2b^2+b^2c^2+c^2a^2\)( 4 )

Thay ( 4 ) vào ( 2 ) ta được :

\(a^4+b^4+c^4+2\left(ab+bc+ca\right)^2=4\left(ab+bc+ca\right)^2\)

\(\Leftrightarrow a^4+b^4+c^4=2\left(ab+bc+ca\right)^2\)( 5 )

Từ ( 1 ) => \(ab+bc+ca=\frac{-a^2-b^2-c^2}{2}\)

\(\Rightarrow2\left(ab+bc+ca\right)^2=\frac{\left(a^2+b^2+c^2\right)^2}{2}\)( 6 )

Từ ( 3 ) ; ( 5 ) và ( 6 ) => Đpcm