Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a; Vì Ư(111)={1;3;37;111} nên 111 ko phải số nguyên tố
A=abc +bca+cab
A=a x100+bx10+c+b x100+c x10+a +c x100+a x10+b
A=a x111+b x111+c x111
A=111 x(a+b+c)
A=37 x3 x(a+b+c) : hết cho 37
tick nha nhanh nhất nè
mà đây là toán 6 mà
a) abcdeg = 1000.abc +deg = 1001.abc - abc + deg = 1001.abc - (abc - deg)
Mà 1001.abc chia hết cho 7 và abc - deg chia hết cho 7
=> abcdeg chia hết cho 7 (đpcm)
b) abcdeg = 10000.ab + 100.cd + eg = 9999.ab + 99.cd + (ab + cd + eg)
Vì 9999.ab chia hết cho 11, 99.cd chia hết cho 11 và ab + cd + eg chia hết cho 11
=> abcdeg chia hết cho 11 (đpcm)
Cho mình **** nha
a) Dựa vào dấu hiệu chia hết cho 7.
b) Dực vào dấu hiệu chia hết cho 11.
a, b, c,d là các chữ số
abcd chia hết cho 9 nên (a + b + c + d) chia hết cho 9
Mà ab + cd = (a + b + c + d)
Nên ab + cd cũng chia hết cho 9
7.x+4.x=x.(7+4)
=x.11
Ví 11 không chia hết cho 37=>x chia hết cho 37(1)
13.x+18.x=x.(13+18)
=x.31
từ (1)=>x.31 chia hết cho 37=>13.x+18.x chia hết cho 37
Vậy 7.x+4.x chia hết cho 37 thì 13.x+18.x cũng chia hết cho 37
Dãy số abc chia hết cho 27 :
108; 135; 162; ...; 999
Từ dãy số trên ta lập dãy số bca :
081; 351; 621; ...; 999
Nhận thấy các số trong dãy số bca luôn chia hết cho 27 và số sau bằng số liền trước công với 270.
Kết luận : abc chia hết cho 27 thì bca cũng chia hết cho 27
Ta có
\(abc=10ab+c⋮37\)
\(\Leftrightarrow1000ab+100c⋮37\)
\(\Leftrightarrow999ab+ab+100c⋮37\)
\(\Leftrightarrow999ab+cab⋮37\)
Mà 999 chia hết cho 37 => 999ab chia hết cho 37
=> cab cũng chia hết cho 37 (đpcm)
Ta có abc chia hết cho 37 thì abc0 chia hết cho 37.
-> a000 + bc0 chia hết cho 37
-> 1000xa +bc0 chia hết cho 37
-> 999xa + a + bc0 chia hết cho 37
-> 27x37xa + bca chia hết cho 37
Do 27x37xa chia hết cho 37 nên bca chia hết cho 37