\(\frac{a}{3}=\frac{b}{4}=\frac{c}{11}\). Tính giá trị biểu thức :
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2018

Áp dụng dãy tỉ số bằng nhau:

\(\frac{a}{3}=\frac{b}{4}=\frac{c}{11}=\frac{b+c-a}{4+11-3}=\frac{b+c-a}{12}=\frac{a+c-b}{3+11-4}=\frac{a+c-b}{10}\)

\(\Rightarrow\frac{b+c-a}{a+c-b}=\frac{12}{10}=\frac{6}{5}\)

2 tháng 8 2018

mk làm kiểu khác

Đặt \(\frac{a}{3}=\frac{b}{4}=\frac{c}{11}=k\)

\(\Rightarrow a=3k;b=4k;c=11k\)(1)

Thay (1) vào biểu thức A ta được:

\(\frac{4k+11k-3k}{3k+11k-4k}=\frac{12k}{10k}=\frac{6}{5}\)

Vậy..................

1 tháng 8 2020

Vì \(a,b,c\ne0\)

\(\Rightarrow\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{b+c+a+c+a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)

\(\Rightarrow\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b}{c}=2\)

\(\Rightarrow P=\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=2+2+2=6\)

1 tháng 8 2020

Ta có : \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\)

=> \(\frac{a}{b+c}+1=\frac{b}{a+c}+1=\frac{c}{a+b}+1\)

=> \(\frac{a+b+c}{b+c}=\frac{a+b+c}{a+c}=\frac{a+b+c}{a+b}\)

Nếu a + b + c = 0

=> a + b = - c

=> b + c = - a

=> a + c = - b

Khi đó P = \(\frac{-a}{a}+\frac{-b}{b}+\frac{-c}{c}=-1+\left(-1\right)+\left(-1\right)=-3\)

Nếu a + b + c \(\ne0\)

=> \(\frac{1}{b+c}=\frac{1}{a+c}=\frac{1}{a+b}\)

=> b + c = a + c = a + b

=> \(\hept{\begin{cases}b+c=a+c\\b+c=a+b\end{cases}\Rightarrow\hept{\begin{cases}a=b\\a=c\end{cases}}\Rightarrow a=b=c}\)

Khi đó P = \(\frac{2a}{a}+\frac{2b}{b}+\frac{2c}{c}=2+2+2=6\)

=> P = 6

Vậy khi a + b + c = 0 => P = -3

khi a + b + c  \(\ne0\) => P = 6

4 tháng 11 2018

áp dụng t/c dãy tỉ số bằng nhau ta có
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

\(\Rightarrow\hept{\begin{cases}\frac{a}{b}=1\Rightarrow a=b\\\frac{b}{c}=1\Rightarrow b=c\\\frac{c}{a}=1\Rightarrow c=a\end{cases}}\Rightarrow a=b=c\)

\(\Rightarrow\frac{a^3.b^2.c^{2011}}{b^{2016}}=\frac{a^{2016}}{a^{2016}}=1\)

4 tháng 11 2018

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

\(\Rightarrow a=b=c\)

\(M=\frac{a^3.b^2.c^{2011}}{b^{2016}}=\frac{b^{2011+3+2}}{b^{2016}}=\frac{b^{2016}}{b^{2016}}=1\)

20 tháng 2 2019

Giải: Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\) (vì a + b + c + d\(\ne\)0)

=> \(\frac{a}{b}=1\)=> a = b

    \(\frac{b}{c}=1\) => b = c      

  \(\frac{c}{d}=1\) => c = d                              

\(\frac{d}{a}=1\) => d = a

=> a = b = c = d

Khi đó, ta có: \(\frac{2a-b}{c+d}+\frac{2b-c}{a+d}+\frac{2c-d}{a+b}+\frac{2d-a}{b+c}\)

hay \(\frac{2a-a}{a+a}+\frac{2a-a}{a+a}+\frac{2a-a}{a+a}+\frac{2a-a}{a+a}\)

\(=\frac{a}{2a}+\frac{a}{2a}+\frac{a}{2a}+\frac{a}{2a}\)

\(\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}\)

\(\frac{1}{2}.4=2\)

14 tháng 10 2018

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\Rightarrow a=b=c.\)

\(\Rightarrow M=\frac{a^{2013}b^2c}{c^{2016}}=\frac{c^{2013+2}}{c^{2016}}=\frac{c^{2016}}{c^{2016}}=1\)

14 tháng 10 2018

a/b=b/c=c/a

Áp dụng t/c dãy tỉ số bằng nhau ta có :

a/b=b/c=c/a=a+b+c/b+c+a=1 

suy ra a/b =b/c=c/a=1 suy ra a=b=c 

suy ra M =1

9 tháng 12 2018

Bài 1:

Nếu a,b,c # 0 thì theo tính chất của dãy tỉ số bằng nhau , ta có:

\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)

Nếu a + b + c = 0 thì b + c = -a ; c + a = - b ; a + b = -c

<=> Tỉ số của \(\frac{a}{b+c};\frac{c}{c+a};\frac{c}{a+b}\) Bằng -1

Sai rồi em ơi 2 trường hợp cơ 

+, bằng -1

+, bằng 2

30 tháng 11 2018

a)  x=2 :y thuộc {9: -9 }

b) đặt k nha bạn kq = 4/ 5

k nha

30 tháng 11 2018

1, \(\left|2x-27\right|^{2011}+\left(3y+10\right)^{2012}=0\)

Vì \(\hept{\begin{cases}\left|2x-27\right|^{2011}\ge0\forall x\\\left(3y+10\right)^{2012}\ge0\forall x\end{cases}\Rightarrow VT\ge0\forall x}\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x-27=0\\3y+10=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{27}{2}\\y=-\frac{10}{3}\end{cases}}}\)
Vậy ...................

2 tháng 2 2018

Có : a/ab+a+1 = a/ab+a+abc = 1/b+1+bc = 1/bc+b+1

        c/ca+c+1 = bc/abc+bc+b = b/1+bc+b = b/bc+b+1

=> A = 1+bc+b/bc+b+1 = 1

Tk mk nha

2 tháng 2 2018

BÀI 1:

\(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}\)

\(=\frac{a}{ab+a+1}+\frac{ab}{a\left(bc+b+1\right)}+\frac{abc}{ab\left(ca+c+1\right)}\)

\(=\frac{a}{ab+a+1}+\frac{ab}{abc+ab+a} +\frac{abc}{a^2bc+abc+ab}\)        

\(=\frac{a}{ab+a+1}+\frac{ab}{ab+a+1}+\frac{1}{ab+a+1}\)       (thay   abc = 1)

\(=\frac{a+ab+1}{a+ab+1}=1\)