Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Vì \(x=7\)\(\Rightarrow x+1=8\)
\(\Rightarrow A=x^{15}-8x^{14}+8x^{13}-8x^{12}+.......-8x^2+8x-5\)
\(=x^{15}-\left(x+1\right)x^{14}+\left(x+1\right)x^{13}-.......-\left(x+1\right)x^2+\left(x+1\right)x-5\)
\(=x^{15}-x^{15}-x^{14}+x^{14}+x^{13}-......-x^3-x^2+x^2+x-5\)
\(=x-5=7-5=2\)
2. Gọi 3 số cần tìm lần lượt là \(a\), \(a+1\), \(a+2\)( \(a\inℕ\))
Tích của 2 số đầu là: \(a\left(a+1\right)\)
Tích của 2 số sau là: \(\left(a+1\right)\left(a+2\right)\)
Vì tích của 2 số đầu nhỏ hơn tích của 2 số sau là 50 nên ta có phương trình:
\(\left(a+1\right)\left(a+2\right)-a\left(a+1\right)=50\)
\(\Leftrightarrow\left(a+1\right).\left(a+2-a\right)=50\)
\(\Leftrightarrow2.\left(a+1\right)=50\)
\(\Leftrightarrow a+1=25\)
\(\Leftrightarrow a=24\)
Vậy 3 số cần tìm lần lượt là 24 , 25 , 26
1) Ta có: \(x=7\Rightarrow x+1=8\)
Thay vào:
\(A=x^{15}-\left(x+1\right)x^{14}+\left(x+1\right)x^{13}-\left(x+1\right)x^{12}+...-\left(x+1\right)x^2+\left(x+1\right)x-5\)
\(A=x^{15}-x^{15}-x^{14}+x^{14}+x^{13}-...-x^3-x^2+x^2+x-5\)
\(A=x-5=7-5=2\)
Câu 1.
B = ( 3x + 5 )( 2x + 1 ) + ( 4x - 1 )( 3x + 2 )
= 6x2 + 3x + 10x + 5 + 12x2 + 8x - 3x - 2
= 18x2 + 18x + 3
| x | = 2 => x = ±2
Với x = 2 => B = 18.22 + 18.2 + 3 = 111
Với x = -2 => B = 18.(-2)2 + 18.(-2) + 3 = 39
C = ( 2x + y )( 2x + y ) + ( x - y )( y - z )
= 4x2 + 4xy + y2 + xy - xz - y2 + yz
= 4x2 + 5xy - xz + yz
Với x = 1 ; y = 1 ; z = 1 => C = 4.12 + 5.1.1 - 1.1 + 1.1 = 9
Câu 2.
Gọi ba số tự nhiên cần tìm là a ; a + 1 ; a + 2 ( a ∈ N )
Theo đề bài ta có :
( a + 1 )( a + 2 ) - a( a + 1 ) = 50
<=> a2 + 3a + 2 - a2 - a = 50
<=> 2a + 2 = 50
<=> 2a = 48
<=> a = 24 ( tmđk )
=> a + 1 = 25 ; a + 2 = 26
Vậy ba số cần tìm là 24 ; 25 ; 26
Câu 3.
Sửa đề một chút : ( x + y )( x3 - x2y + xy2 - y ) = x4 - y4
( x + y )( x3 - x2y + xy2 - y3 )
= x4 - x3y + x2y2 - xy3 + x3y - x2y2 + xy3 - y4
= x4 - y4 ( đpcm )
Câu 1 :
\(a,B=\left(3x+5\right)\left(2x-1\right)+\left(4x-1\right)\left(3x+2\right)\)
\(=6x^2-3x+10x-5+12x^2+8x-3x-2\)
\(=\left(6x^2+12x^2\right)+\left(-3x+10x+8x-3x\right)+\left(-5-2\right)\)
\(=18x^2-4x-7\)
Với \(|x|=2\Rightarrow x=\pm2\)
Với x = 2 => \(B=18.2^2-4.2-7=72-8-7=57\)
Với x = -2 => \(B=18.\left(-2\right)^2-4.\left(-2\right)-7=73\)
Câu b tương tự
Câu 2 :
Gọi 3 số tự nhiên cần tìm là a , a+1 , a+2 .
Vì tích của hai số đầu hỏ hơn tích của hai số sau là 50 nên ta có :
\(\left(a+1\right)\left(a+2\right)-a\left(a+1\right)=50\)
\(\Leftrightarrow a^2+2a+a+2-a^2-a=50\)
\(\Leftrightarrow\left(a^2-a^2\right)+\left(a-a\right)+2a=50-2\)
\(\Leftrightarrow2a=48\)
\(\Leftrightarrow a=24\)
Vậy ba số tự nhiên cần tìm lần lượt là 24,25,26 .
Câu 3 :
Ta có :
\(\left(x+y\right)\left(x^3-x^2y+xy^2-y^3\right)\)
\(=x^4-x^3y+x^2y^2-xy^3+yx^3-x^2y^2+xy^3-y^4\)
\(=x^4+\left(-x^3y+yx^3\right)+\left(x^2y^2-x^2y^2\right)+\left(-xy^3+xy^3\right)-y^4\)
\(=x^4-y^4\)
=> đpcm
Đợi nghĩ ra cách ngắn hơn nhá :))
\(1)\)\(B=x^{15}-8x^{14}+8x^{13}-8x^{12}+...-8x^2+8x-5\)
\(B=-7x^{15}+\left(8x^{15}-8x^{14}\right)+\left(8x^{13}-8x^{12}\right)+...+\left(8x^3-8x^2\right)+\left(8x-8\right)+3\)
\(B=-7x^{15}+8x^{14}\left(x-1\right)+8x^{12}\left(x-1\right)+...+8x^2\left(x-1\right)+8\left(x-1\right)+3\)
\(B=-7x^{15}+8\left(x-1\right)\left(x^{14}+x^{12}+...+x^2+1\right)+3\)
\(B=-7x^{15}+8\left(x-1\right)\left[x^{12}\left(x^2+1\right)+x^8\left(x^2+1\right)+...+\left(x^2+1\right)\right]+3\)
\(B=-7x^{15}+8\left(x-1\right)\left(x^2+1\right)\left(x^{12}+x^8+...+1\right)+3\)
\(B=-7x^{15}+8\left(x-1\right)\left(x^2+1\right)\left[x^8\left(x^4+1\right)+\left(x^4+1\right)\right]+3\)
\(x=7\)\(\Rightarrow\)\(x+1=8\)
\(B=-7x^{15}+\left(x+1\right)\left(x-1\right)\left(x^2+1\right)\left(x^4+1\right)\left(x^8+1\right)+3\)
\(B=-7x^{15}+\left(x^2-1\right)\left(x^2+1\right)\left(x^4+1\right)\left(x^8+1\right)\)
\(B=-7x^{15}+\left(x^4-1\right)\left(x^4+1\right)\left(x^8+1\right)\)
\(B=-7x^{15}+\left(x^8-1\right)\left(x^8+1\right)=-7x^{15}+x^{16}-1=x^{15}\left(x-7\right)-1=-1\)
...
Bài 1:
ta có: x=7 => x+ 1 =8
thay vào biểu thức B
\(\Rightarrow B=x^{15}-\left(x+1\right)x^{14}+\left(x+1\right)x^{13}-\left(x+1\right)x^{12}+...-\left(x+1\right)x^2+\left(x+1\right)x-5\) \(B=x^{15}-x^{15}-x^{14}+x^{14}+x^{13}-x^{13}-x^{12}+...-x^3-x^2+x^2+x-5\)
\(B=x-5\)
\(B=7-5\)
\(B=2\)
Bài 2:
bn tham khảo link dưới nha:
https://olm.vn/hoi-dap/question/982834.html
Bài 3: Bn xem lại giúp mk nha!!! ( Chỗ nếu: thì....)
\(B=x^{15}-8x^{14}+8x^{13}-8x^{12}+...+8x-5\)
\(=x^{15}-\left(x+1\right)x^{14}+\left(x+1\right)x^{13}-\left(x+1\right)x^{12}+...+\left(x+1\right)x-x+2\)
\(=x^{15}-x^{15}-x^{14}+x^{14}+x^{13}-x^{13}-x^{12}+...+x^2+x-x+2\)
\(=2\)
Bài 1 : Thay 8 = x + 1 vào B
=> B = x15 - ( x + 1 ) x14 + ( x + 1 ) x13 - ( x + 1 ) x12 ......+ ( x + 1 ) x - 5
= x15 - x15 - x14 + x14 + x13 - x13 ...... - x2 + x2 + x - 5
= x - 5
Mà x = 7
=> B = 7 - 5 = 2
Vậy B = 1
2 ) Gọi ba số cần tìm là a; a+1; a+2
Vì tích hai số đầu nhỏ hơn tích hai số sau là 50
=> a ( a + 1 ) = ( a + 1 ) ( a + 2 ) - 50
=> a2 + a = a2 + 3a + 2 - 50
=> a = 3a - 48
=> 2a = 48
=> a = 24
Vậy 3 số phải tìm là 24; 25; 26
Bài 3 đề bài chưa rõ nếu cái gì ? Bạn sửa lại đi, mình sẽ giải
1.B = x15 - 8x14 + 8x13 - 8x2 + ... - 8x2 + 8x - 5
B = x^15 - 7x^14 -x^14+7x^13+x^13-7x^12-...-x^2+7x+x-5
B = x^14(x-7) - x^14(x-7) +...+x^2(x-7)-x(x-7)+x-5
B = 7-5=2
2.Gọi 3 số cần tìm là theo thứ tự a,b,c
Ta có:
b.c - a.b = 50
=> b.(c-a) = 50
Vì là 3 số tự nhiên liên tiếp
=> khoảng cách giữa a và c là 2
Ta có: 50 = 2 . 25
=> b = 25
=> a = 25 - 1 = 24
=> c = 25 + 1 = 26
Vậy 3 số đó là: 24;25;26 cần tìm
3.(a+b)^2=2(a^2+b^2)
<=> a^2+b^2+2ab=2a^2+2b^2
<=> a^2+b^2=2ab
<=>a^2+b^2-2ab=0
<=>(a-b)^2=0
=> a-b=0
<=>a=b(đpcm)
Câu 3 thiếu đề nhé, đề đúng là: CMR nếu: \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)thì \(\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)=\left(ax+by+cz\right)^2\)
Giải
Ta có: \(\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)-\left(ax+by+cz\right)^2\)
\(=x^2a^2+x^2b^2+x^2c^2+y^2a^2+y^2b^2+y^2c^2+z^2a^2+z^2b^2+z^2c^2\)\(-a^2x^2-b^2y^2-c^2z^2-2axby-2bycz-2axcz\)
\(=x^2b^2+x^2c^2+y^2a^2+y^2c^2+z^2a^2+z^2b^2-2axby-2bycz-2axcz\)
\(=x^2b^2-2xbay+a^2y^2+y^2c^2-2ycbz+z^2b^2+x^2c^2-2cxaz+a^2z^2\)
\(=\left(xb-ay\right)^2+\left(yc-zb\right)^2+\left(xc-az\right)^2\)
Lại có: \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\Rightarrow\hept{\begin{cases}bx=ay\\yc=bz\\cx=az\end{cases}}\)
\(\Rightarrow\left(bx-ay\right)^2+\left(yc-bz\right)^2+\left(cx-az\right)^2=\left(ay-ay\right)^2+\left(bz-bz\right)^2+\left(az-az\right)^2=0\)
\(\Rightarrow\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)-\left(ax+by+cz\right)^2=0\)
\(\Rightarrow\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)=\left(ax+by+cz\right)^2\)
=> Đpcm
P/s: Nãy đánh xoq rồi tự nhiên olm lỗi, không gửi được, giờ đánh lại T.T Tức~
\(B=x^{15}-8x^{14}+8x^{13}-8x^{12}+...-8x^2+8x-5\)
\(=x^{15}-7x^{14}-x^{14}+7x^{13}+x^{13}-7x^{12}+...\)
\(-7x^2-x^2+7x+x-5\)
\(=x^{14}\left(x-7\right)-x^{13}\left(x-7\right)+...-x\left(x-7\right)+\left(x-7\right)+2\)
\(=2\)
Gọi 3 số tự nhiên liên tiếp là a; a + 1; a + 2
Theo đề, ta có: \(\left(a+1\right)\left(a+2\right)-a\left(a+1\right)=50\)
\(\Leftrightarrow a^2+3a+2-a^2-a=50\)
\(\Leftrightarrow2a+2=50\Leftrightarrow a+1=25\Leftrightarrow a=24\)
Vậy 3 số đó là 24; 25; 26
1) (3x+4)(x+1) = 3x2+7x+4 đặt là a
(6x+7)2= 36x2+84x+49 = 12a+1
=> a(12a+1)- 6 = 12a2 -a -6 = (3a+2)(4a-3) = (9x2+21x+14)(12x2+28x+13)
2) (x-2)2=x2-4x+4 đặt là a
(2x-5)(2x-3)= 4x2-16x+15 =4a-1
=> a(4a-1)-5 = 4a2-a-5 = (4a-5)(a+1) = ( 4x2-16x+11)(x2-4x+5)
3) đặt (x+3)2 =a ta làm tương tự
4) (x-2)(x-10)(x-4)(x-5) = (x2-12x+20)(x2-9x+20)
đặt x2+20=a => (a-12x)(a-9x)-54x2 = a2-21ax+54x2 = (a-18x)(a-3x) = (x2-18x+20)(x2-3x+20)
1) ở đây :Câu hỏi của Lê Phương Thanh - Toán lớp 8 | Học trực tuyến
nếu ko được chị có thể vào thống kê hỏi đáp có chữ màu xanh nhấn vò đó sẽ ra
2)đây là 1 bài toán mang tính chất kham khảo dựa vào đây chị có thể giải được bài 2
Tìm ba số tự nhiên chẵn liên tiếp, biết tích của hai số sau lớn hơn tích của hai số đầu là 192.
Gọi số chẵn đầu là k, các số sau lần lượt là k+2 và k + 4. Theo đề ta có:
(k+2)(k+4) - k(k+2) = 192
=> k2 + 6k + 8 - k2 - 2k = 192
=> 4k = 192 - 8 = 184
=> k = 46
=> k + 2 = 48, k + 4 = 50
Vậy ba số đó là 46,48,50
Có thể dựa vào bài này chúc chị hc tốt
#)Giải :
Bài 1 :
\(\left(3x^2-x+1\right)\left(x-1\right)+x^2\left(4-3x\right)=\frac{5}{2}\)
\(\Leftrightarrow3x^3-x^2+x-3x^2+x-1+4x^2-3x^3=\frac{5}{2}\)
\(\Leftrightarrow2x-1=\frac{5}{2}\)
\(\Leftrightarrow x=\frac{7}{4}\)
Bài 2 :
Gọi ba số đó là x-2, x, x+2
Theo đầu bài, ta có :
(a-2)a + 28 = a(a+2)
<=> a2 - 2a + 28 = a2 + 2a
<=> 28 = a2 + 2a - a2 + 2a
<=> 28 = 4a
<=> a = 7
<=> a - 2 = 5
<=> a + 2 = 9
Vậy ba số cần tìm là 5, 7, 9