Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1 :
\(a,2\left(\frac{3}{4}-5x\right)=\frac{4}{5}-3x\)
\(\Rightarrow\frac{3}{2}-10x=\frac{4}{5}-3x\)
\(\Rightarrow7x=\frac{3}{2}-\frac{4}{5}\)
\(\Rightarrow7x=\frac{7}{10}\)\(\Leftrightarrow x=0,1\)
\(b,\frac{3}{2}-4\left(\frac{1}{4}-x\right)=\frac{2}{3}-7x\)
\(\Rightarrow\frac{3}{2}-1+4x=\frac{2}{3}-7x\)
\(\Rightarrow11x=\frac{2}{3}+1-\frac{3}{2}\)
\(\Rightarrow11x=\frac{4+6-9}{6}-\frac{1}{6}\)
\(\Rightarrow x=\frac{1}{66}\)
Câu 2 :
\(a,\frac{2}{x-1}< 0\)
Vì \(2>0\Rightarrow\)để \(\frac{2}{x-1}< 0\)thì \(x-1< 0\Leftrightarrow x< 1\)
\(b,\frac{-5}{x-1}< 0\)
Vì \(-5< 0\)\(\Rightarrow\)để \(\frac{-5}{x-1}< 0\)thì \(x-1>0\Rightarrow x>1\)
\(c,\frac{7}{x-6}>0\)
Vì \(7>0\Rightarrow\)để \(\frac{7}{x-6}>0\)thì \(x-6>0\Rightarrow x>6\)
Qui đồng mẫu số:
a/b = a(b+2001) / b(b+2001) = ab + 2001a / b(b+2001)
a+2001 / b + 2001 = (a+2001)b / (b + 2001)b = ab + 2001b / b(b+2001)
Vì b>0 nên mẫu số của hai phân số trên dương.
Chỉ cần so sánh tử số. '
So sánh ab + 2001a với ab + 2001b
Nếu a < b => tử số phân số thứ nhất < tử số phân số thứ hai
=>a/b < a+2001/b+2001
Nếu a = b
=> hai phân số bằng nhau = 1
Nếu a > b
=> Tử số phân số thứ nhất lớn hơn tử số phân số thứ hai
=> a/b > a+2001/ b +2001
Xét tích a(b + 2001) = ab + 2001a (1)
b(a + 2001) = ab + 2001b (2)
TH1: nếu a < b
=> 2001a < 2001b (3)
Từ (1),(2),(3) => a(b + 2001) < b(a + 2001) => \(\frac{a}{b}< \frac{a+2001}{b+2001}\)
TH2: nếu a > b
=> 2001a > 2001b (4)
Từ (1),(2),(4) => a(b+2001)>b(a+2001) => \(\frac{a}{b}>\frac{a+2001}{b+2001}\)
TH3: nếu a = b => \(\frac{a}{b}=\frac{a+2001}{b+2001}=1\)
#)Giải :
Quy đồng mẫu số :
\(\frac{a}{b}=\frac{a\left(b+2001\right)}{b\left(b+2001\right)}=\frac{ab+2001a}{b\left(b+2001\right)}\)
\(\frac{a+2001}{b+2001}=\frac{\left(a+2001\right)b}{\left(b+2001\right)b}=\frac{ab+2001b}{b\left(b+2001\right)}\)
Vì b > 0 nên mẫu số của hai phân số trên dương. Chỉ cần so sánh tử số
So sánh ab + 2001a và ab + 2001b
- Nếu a < b => tử số của phân số thứ nhất < tử số của phân số thứ hai
=> \(\frac{a}{b}< \frac{a+2001}{b+2001}\)
- Nếu a = b => hai phân số bằng nhau và bằng 1
- Nếu a > b => tử số của phân số thứ nhất > tử số của phân số thứ hai
=> \(\frac{a}{b}>\frac{a+2001}{b+2001}\)
Cho mình tham gia và mk cần hỏi những câu sau: ở câu số 2 : 4x3 là sao bạn 4x*3 hay là 4*3
Bài 3 mk k vẽ hình đc k mong bạn trả lời sớm
\(D=4+6+8+10+12+...+988\)
\(2+D=2.\left(1+2+3+4+5+6+...+494\right)\)
\(2+D=2.\frac{\left(494+1\right).494}{2}=244530\)
\(\Leftrightarrow D=244528\)
Vậy \(D=244528\)
a)\(\frac{-15}{18}-\left(x-\frac{1}{3}\right)=\frac{25}{27}\)
\(\frac{-5}{6}-x+\frac{2}{6}=\frac{25}{27}\)
\(\frac{-1}{2}-x=\frac{25}{27}\)
\(x=\frac{-77}{54}\)
Vậy............
b) \(\frac{-3}{5}-\left(2x-\frac{1}{20}\right)=\frac{3}{4}\)
\(\frac{-12}{20}-2x+\frac{1}{20}=\frac{15}{20}\)
\(\frac{-11}{20}-2x=\frac{15}{20}\)
\(2x=\frac{-13}{10}\)
\(x=\frac{-13}{20}\)
Vậy.............
1.
\(a,-\frac{15}{18}-\left(x-\frac{1}{3}\right)=\frac{25}{27}\)
\(-\frac{5}{6}-x+\frac{2}{6}=\frac{25}{27}\)
\(-\frac{1}{2}-x=\frac{25}{27}\)
\(x=-\frac{77}{54}\)
\(b,-\frac{3}{5}-\left(2x-\frac{1}{20}\right)=\frac{3}{4}\)
\(-\frac{12}{20}-2x+\frac{1}{20}=\frac{15}{20}\)
\(-\frac{11}{20}-2x=\frac{15}{20}\)
\(2x=-\frac{13}{10}\)
\(x=-\frac{13}{20}\)
2.
\(a,-\frac{5}{6}\)và \(1,2\)
\(=-\frac{5}{6}\)và \(\frac{12}{10}\)
\(=-\frac{50}{60}\)và \(\frac{72}{60}\)
Nếu như quy đồng 2 số lên thì ta đc \(-\frac{50}{60}< \frac{72}{60}\)
\(\Rightarrow-\frac{5}{6}\)\(< 1,2\)
\(b,\frac{15}{16}\)và \(\frac{17}{18}\)
Theo như những bài toán đã hc thìn ội dung ở cuối bài là phân số nào có tử bé hơn thì có phân số lớn hơn phân số có tử lớn hơn
\(\Rightarrow\frac{15}{16}>\frac{17}{18}\)
\(c,\frac{1999}{2000}\)và \(\frac{2000}{2001}\)
Ta quy đồng
Đc
\(\frac{3999999}{4002000}\)và \(\frac{4000000}{4002000}\)
\(\Rightarrow\frac{1999}{2000}< \frac{2000}{2001}\)
Ta có bổ đề \(\frac{a}{b}< \frac{a+m}{b+m}\)
=> \(\frac{a}{b}< \frac{a+2}{b+2}\)
Chúc hok tốt
a)\(A>0\Leftrightarrow\left(a+3\right)\left(a-5\right)>0\Rightarrow\)có 2TH
TH1
nếu a + 3 < 0 => a < -3
TH2
nếu a - 5 > 0 => a > 5
b)\(A=0\Leftrightarrow a+3=0\Rightarrow a=-3\)
c) \(A< 0\Leftrightarrow\left(a+3\right)\left(a-5\right)< 0\Rightarrow\)có 2TH
TH1 8 > a + 3 > 0 => 5 > a > -3
TH2 2 < a - 5 < 0 => -3 < a < 5
d) \(A\in Z\Leftrightarrow a+3⋮a-5\)
\(\Rightarrow\left(a-5\right)+8⋮a-5\)
\(\Rightarrow a-5\inƯ\left(8\right)\)
\(\Rightarrow a-5\in\left\{1;2;4;8;-1;-2;-4;-8\right\}\)
\(\Rightarrow a\in\left\{6;7;9;13;4;3;1;-3\right\}\)