K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2021

tui không biết mong bà thông cảm

31 tháng 7 2021

\(\left(x+3\right)\left(x^2-3x+9\right)-x\left(x-1\right)\left(x+1\right)=27\)

\(\Leftrightarrow x^3+27-x\left(x^2-1\right)=27\)

\(\Leftrightarrow x^3+27-x^3+x=27\)

\(\Leftrightarrow27+x=27\)

\(\Leftrightarrow x=0\)

#H

30 tháng 7 2021

\(3\left(1-4x\right)\left(x-1\right)+4\left(3x-2\right)\left(x+3\right)=-27\)

\(\Leftrightarrow3\left(-1-4x^2+5x\right)+4\left(3x^2+7x-6\right)=-27\)

\(\Leftrightarrow-12x^2+15x-3+12x^2+28x-24=-27\)

\(\Leftrightarrow43x-27=-27\Leftrightarrow x=0\)

30 tháng 7 2021

\(3\left(1-4x\right)\left(x-1\right)+4\left(3x-2\right)\left(x+3\right)=-27\)

\(\Leftrightarrow\left(3-12x\right)\left(x-1\right)+\left(12x-8\right)\left(x+3\right)=-27\)

\(\Leftrightarrow3x-3-12x^2+12x+12x^2+36x-8x-24+27=0\)

\(\Leftrightarrow43x=0\)

\(\Leftrightarrow x=0\)

#H

16 tháng 12 2018

\(x^3+2x^2+3x=0\)\(\Leftrightarrow x.\frac{x^3+2x^2+3x}{x}=0\)

\(\Leftrightarrow x\left(x^2+2x+3\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}x=0\\x^2+2x+3=0\end{cases}}\)

Ta sẽ c/m \(x^2+2x+3=0\) vô nghiệm.Thật vậy:

\(x^2+2x+3=\left(x+1\right)^2+2\ge2\forall x\)

Từ đó suy ra \(x^2+2x+3=0\) vô nghiệm.

Vậy : x = 0

16 tháng 12 2018

\(\left(x+2\right)\left(2x-1\right)+1=4x^2\)

\(2x^2-x+4x-2+1=4x^2\)

\(\Rightarrow2x^2-3x+1=0\)

\(2x\left(x-1\right)-\left(x-1\right)=0\)

\(\left(x-1\right)\left(2x-1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-1=0\\2x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{1}{2}\end{cases}}}\)

Vậy \(\orbr{\begin{cases}x=1\\x=\frac{1}{2}\end{cases}}\)

ý còn lại tham khảo bài tth

15 tháng 10 2020

Bài 1:

a) \(3x^2-9x=3x\left(x-3\right)\)

b) \(x^2-4x+4=\left(x-2\right)^2\)

c) \(x^2+6x+9-y^2=\left(x+3\right)^2-y^2=\left(x-y+3\right)\left(x+y+3\right)\)

Bài 2: 

a) \(101^2-1=\left(101-1\right)\left(101+1\right)=102.100=10200\)

b) \(67^2+66.67+33^2=67^2+2.33.67+33^2\)

\(=\left(67+33\right)^2=100^2=10000\)

Bài 3:

\(x\left(x-3\right)+2\left(x+3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-2\end{cases}}\)

Vậy \(x=-2\)hoặc \(x=3\)

15 tháng 10 2020

B1:

a) \(3x^2-9x=3x.\left(x-3\right)\)

b) \(x^2-4x+4=\left(x-2\right)^2\)

c) \(x^2+6x+9-y^2=\left(x+3\right)^2-y^2=\left(x+3+y\right).\left(x+3-y\right)\)

B2:

a) \(101^2-1=\left(101+1\right).\left(101-1\right)=102.100=10200\)

b) \(67^2+66.67+33^2=67^2+2.33.67+33^2=\left(67+33\right)^2=100^2=10000\)

B3:

\(x\left(x-3\right)+2\left(x-3\right)=0\)

\(\left(x-3\right).\left(x+2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-3=0\\x+2=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=3\\x=-2\end{cases}}\)

18 tháng 12 2018

\(x^2+y^2-xy-2x-2y+9=x^2+y^2+2xy-2x-2y+9-3xy\)

\(=\left(x+y\right)^2-2\left(x+y\right)+9-3xy=\left(x+y-2\right)\left(x+y\right)+9-3xy.\)

\(đếnđâytịt\)

c, =3 dễ

\(\frac{3x^2-6x+9}{x^2-2x+3}=\frac{3\left(x^2-2x+3\right)}{x^2-2x+3}=3\)

18 tháng 12 2018

Câu b bạn không làm à? Làm hộ mình với! Còn câu a thì còn -3xy thì?

A) Với \(x>y>0\),ta có: \(x^2+y^2< x^2+y^2+2xy=\left(x+y\right)^2\Rightarrow\frac{1}{x^2+y^2}>\frac{1}{\left(x+y\right)^2}\)

Xét: \(\frac{x^2-y^2}{x^2+y^2}>\frac{x^2-y^2}{\left(x+y\right)^2}=\frac{\left(x-y\right)\left(x+y\right)}{\left(x+y\right)^2}=\frac{x-y}{x+y}\)--->ĐPCM

B) \(3^{16}+1=\left(3^{16}-1\right)+2=\left(3^8+1\right)\left(3^8-1\right)+2\)

\(=\left(3^8+1\right)\left(3^4+1\right)\left(3^4-1\right)+2\)

\(=\left(3^8+1\right)\left(3^4+1\right)\left(3^2+1\right)\left(3^2-1\right)+2\)

\(=\left(3^8+1\right)\left(3^4+1\right)\left(3^2+1\right)\left(3+1\right)\left(3-1\right)+2\)

\(>\left(3^8+1\right)\left(3^4+1\right)\left(3^2+1\right)\left(3+1\right)\)--->ĐPCM

3 tháng 8 2019

Có : 

b) (x - 8)(x + 8) = (x - 4)(x2 + 4x + 16)

  x2 - 82 = x3 - 43

x2 - 2^6 - x3 + 2 = 0

x2 . ( x - 1 ) = 0

x = 0 hoặc x-1 = 0

x= 0 hoặc x = 1

 Vâỵ....

19 tháng 11 2019

\(\text{a) }\left(x-1\right)^3-\left(x+1\right)\left(x^2-x+1\right)-\left(3x+1\right)\left(1-3x\right)\)

\(=\left(x^3-3x^2+3x-1\right)-\left(x^3+1\right)-\left[1-\left(3x\right)^2\right]\)

\(=x^3-3x^2+3x-1-x^3-1-1+9x^2\)

\(=6x^2+3x-3\)

\(\text{b) }\left(x+y+z-t\right)\left(x+y-z+t\right)\)

\(=\left[\left(x+y\right)+\left(z-t\right)\right]\left[\left(x+y\right)-\left(z-t\right)\right]\)

\(=\left(x+y\right)^2-\left(z-t\right)^2\)

\(=\left(x^2+2xy+y^2\right)-\left(z^2-2zt+t^2\right)\)

\(=x^2+2xy+y^2-z^2+2zt-t^2\)